Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The original stele is on exhibition in the Louvre in Paris.

  2. 2.

    Dr. Clifford W. Hesseltine (1991) said, “Dr. Jokichi Takamine was the father of commercial enzymology.”

  3. 3.

    Enzymes that are exclusively for the production of additives or the production of processing aids are, however, excluded from the new enzyme regulation.

  4. 4.

    Regulation (EC) No. 1332/2008, Article 4.

  5. 5.

    Regulation (EC) No. 1332/2008, Article 18(1).

  6. 6.

    Regulation (EC) No. 1332/2008, Article 7.

  7. 7.

    Regulation (EC) No. 1332/2008, Article 24.

  8. 8.

    Regulation (EC) No. 1332/2008, Article 18(2).

  9. 9.

    Including biobusiness.

  10. 10.

    In relation to the total number of enzymes.

  11. 11.

    Counting self-cloned organisms, although legal self-cloning of nonpathogenic naturally occurring microorganisms is excluded from Directive 90/219/EEC.

Abbreviations

AMFEP:

Association of Manufacturers and Formulators of Enzyme Products

BCWH:

Bacterial cell wall hydrolase

BHA:

2-tert-butyl-4-hydroxyanisole and 3-tert-butyl-4-hydroxyanisole

BHT:

2,6-bis(1,1-dimethylethyl)-4-methylphenol

COT:

British Committee on Toxicology

DCP:

Dichloropropanol

EC:

European Commission or Enzyme Commission

EFSA:

European Food Safety Authority

GM:

Genetically modified

JECFA:

Joint FAO/WHO Expert Committee on Food Additives

MCPD:

Monochloropropanediol

SCF:

EU Scientific Committee on Food

StEP:

Staggered extension process

TFA:

Trans fatty acid

References

  1. ancienttexts.org (2013) The epic of Gilgamesh: Tablet II. http://www.ancienttexts.org/library/mesopotamian/gilgamesh/tab2.htm. Accessed 18 Mar 2013

  2. van Leewenhoeck A (1676) Observations, communicated to the publisher by Mr. Antony van Leewenhoeck, in a Dutch letter of the 9th of Octob. 1676. Here english’d: concerning little animals by him observed in rain-well-sea. and snow water; as also in water wherein pepper had lain infused. Philos Trans R Soc London 12:821–831. doi: 10.1098/rstl.1677.0003

  3. Kirchhoff GS (1815) Ueber die Zuckerbildung beim Malzen des Getreides, und beim Bebrühen seines Mehls mit kochendem Wasser. Journal für Chemie und Physik 14:389–398

    Google Scholar 

  4. Leuchs EF (1831) Ueber die Verzuckerung des Stärkemehls durch Speichel. Archiv für die gesammte Naturlehre 21:105–107

    Google Scholar 

  5. Payen A, Persoz J-F (1833) Mémoire sur la Diastase, les principaux Produits de ses Réactions, et leurs applicatíons aux arts industriels. Annal Chim Phys 53:73–92

    Google Scholar 

  6. Duclaux É (1899) Traité de microbiologie. Masson and Co., Paris

    Google Scholar 

  7. Berzelius JJ (1836) Quelques Idées sur une nouvelle Force agissant dans les Combinaisons des Corps Organiques. Annal Chim Phys 61:146–151

    Google Scholar 

  8. Pasteur ML (1857) Mémoire sur la fermentation appelée lactique. Comptes rendus hebdomadaires des séances de l’Académie des sciences 45:913–916

    Google Scholar 

  9. Kühne W (1877) Ueber das Verhalten verschiedener organisirter und sog. ungeformter Fermente. Verhandlungen des naturhistorisch-medicinischen Vereins zu Heidelberg 1:190–193

    Google Scholar 

  10. Nobelprize.org (2013) The Nobel Prize in chemistry 1909. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1909/. Accessed 18 Mar 2013

  11. Takamine J (1894) Process of making diastatic enzyme. United States Patent Application US 525823

    Google Scholar 

  12. Nobelprize.org (2013) The Nobel Prize in chemistry 1902. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1902/. Accessed 18 Mar 2013

  13. Fischer E (1894) Einfluss der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges 27:2985–2993

    Article  CAS  Google Scholar 

  14. Buchner E (1897) Alkoholische Gährung ohne Hefezellen. Ber Dtsch Chem Ges 30:117–124

    Article  CAS  Google Scholar 

  15. Nobelprize.org (2013) The Nobel Prize in chemistry 1907. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1907/. Accessed 18 Mar 2013

  16. Henri V (1903) Lois générales de l’action des diastases. A. Hermann, Paris

    Google Scholar 

  17. Menten L, Michaelis MI (1913) Die Kinetik der Invertinwirkung. Biochem Z 49:333–369

    Google Scholar 

  18. Johnson KA, Goody RS (2011) The original Michaelis constant: Translation of the 1913 Michaelis–Menten paper. Biochemistry 50:8264–8269. doi:10.1021/bi201284u

    Article  CAS  Google Scholar 

  19. Nobelprize.org (2013) The Nobel Prize in physiology or medicine 1945. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1945/. Accessed 18 Mar 2013

  20. Sumner JB (1926) The isolation and crystallization of the enzyme urease. J Biol Chem 69:435–441

    CAS  Google Scholar 

  21. Nobelprize.org (2013) The Nobel Prize in chemistry 1946. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1946/. Accessed 18 Mar 2013

  22. Schellmann JA, Schellman CG (1997) Kaj Ulrik Linderstrøm-Lang (1896–1959). Protein Sci 6:1092–1100. doi:10.1002/pro.5560060516

    Article  Google Scholar 

  23. Nobelprize.org (2013) The Nobel Prize in chemistry 1929. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1929/. Accessed 18 Mar 2013

  24. Nobelprize.org (2013) The Nobel Prize in physiology or medicine 1978. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1978/. Accessed 18 Mar 2013

  25. Novozymes (2013) Novozymes. http://www.novozymes.com/. Accessed 21 Mar 2013

  26. Neet KE, Koshland DE Jr (1966) The conversion of serine at the active site of subtilisin to cysteine: a “chemical mutation”. Proc Natl Acad Sci U S A 56:1606–1611

    Article  CAS  Google Scholar 

  27. DeSantis G, Jones JB (1999) Chemical modification of enzymes for enhanced functionality. Curr Opin Biotechnol 10:324–330. doi:10.1016/S0958-1669(99)80059-7

    Article  CAS  Google Scholar 

  28. Arnold FH, Volkov AA (1999) Directed evolution of biocatalysts. Curr Opin Chem Biol 3:54–59. doi:10.1016/S1367-5931(99)80010-6

    Article  CAS  Google Scholar 

  29. Kotzia GA, Platis D, Axarli IA et al (2012) Biocatalysis, enzyme engineering and biotechnology. In: Simpson BK, Nollet LML, Toldrá F et al (eds) Food biochemistry and food processing, 2nd edn. Wiley-Blackwell, Oxford

    Google Scholar 

  30. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510–516. doi:10.1038/nrmicro1161

    Article  CAS  Google Scholar 

  31. Novozymes (2012) The Novozymes Report 2011. http://report2011.novozymes.com/Service/Download+report/The-Novozymes-Report-2011.pdf. Accessed 5 Sep 2012

  32. AMFEP (2009) List of enzymes October 2009. http://amfep.drupalgardens.com/sites/amfep.drupalgardens.com/files/Amfep-List-of-Commercial-Enzymes.pdf. Accessed 21 Mar 2013

  33. DSM (2013) DSM. http://www.dsm.com/. Accessed 21 Mar 2013

  34. DuPont (2013) DuPont. http://www.dupont.com/. Accessed 21 Mar 2013

  35. Henkel (2013) Home—Henkel. http://www.henkel.com. Accessed 21 Mar 2013

  36. Spök A, Proksch M (2012) Lebensmittelenzyme in der EU, 3rd edn. Bundesministerium für Gesundheit, Wien

    Google Scholar 

  37. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351. doi:10.1016/S0958-1669(02)00328-2

    Article  CAS  Google Scholar 

  38. Sanchez S, Demain AL (2011) Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org Process Res Dev 15:224–230. doi:10.1021/op100302x

    Article  CAS  Google Scholar 

  39. Whitehurst RJ, van Oort M (2009) Enzymes in food technology, 2nd edn. Blackwell Publishing Ltd, Oxford. doi:10.1002/9781444309935

  40. Bedford MR, Partridge GG (2010) Enzymes in farm animal nutrition. CABI, Wallingford

    Book  Google Scholar 

  41. Son J-H, Ravindran V (2011) Feed enzyme technology: present status and future developments. Recent Pat Food Nutr Agric 3:102–109. doi:10.2174/2212798411103020102

    Article  Google Scholar 

  42. Guzmán-Maldonado H, Paredes-López O, Biliaderis CG (1995) Amylolytic enzymes and products derived from starch: a review. Crit Rev Food Sci Nutr 35:373–403. doi:10.1080/10408399509527706

    Article  Google Scholar 

  43. Sivaramakrishnan S, Gangadharan D, Nampoothiri KM et al (2006) α-Amylases from microbial sources—an overview on recent developments. Food Technol Biotech 44:173–184

    CAS  Google Scholar 

  44. Akoh CC, Chang S-W, Lee G-C, Shaw J-F (2008) Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce. J Agric Food Chem 56:10445–10451. doi:10.1021/jf801928e

    Article  CAS  Google Scholar 

  45. Kelly RM, Dijkhuizen L, Leemhuis H (2009) Starch and α-glucan acting enzymes, modulating their properties by directed evolution. Bioresour Technol 140:184–193. doi:10.1016/j.jbiotec.2009.01.020

    CAS  Google Scholar 

  46. Tang S-Y, Le Q-T, Shim J-H et al (2006) Enhancing thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2 by DNA shuffling. FEBS J 273:3335–3345. doi:10.1111/j.1742-4658.2006.05337.x

    Article  CAS  Google Scholar 

  47. Priyadharshini R, Manoharan S, Hemalatha D, Gunasekaran P (2010) Repeated random mutagenesis of α-amylase from Bacillus licheniformis for improved pH performance. J Microbiol Biotechnol 20:1696–1701

    CAS  Google Scholar 

  48. Collier PD, Cromie DDO, Davies AP (1991) Mechanism of formation of chloropropanols present in protein hydrolysates. J Am Oil Chem Soc 68:785–790. doi:10.1007/BF02662173

    Article  CAS  Google Scholar 

  49. Linke D, Krings U, Zorn H et al (2010) Peptidases from basidiomycetes. European Patent Application EP2139996 (A1)

    Google Scholar 

  50. Haefner S, Knietsch A, Scholten E et al (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68:588–597. doi:10.1007/s00253-005-0005-y

    Article  CAS  Google Scholar 

  51. Pallauf J, Rimbach G (1997) Nutritional significance of phytic acid and phytase. Arch Anim Nutr 50:301–319. doi:10.1080/17450399709386141

    CAS  Google Scholar 

  52. Lenis NP, Jongbloed AW (1999) New technologies in low pollution swine diets: diet manipulation and use of synthetic amino acids, phytase and phase feeding for reduction of nitrogen and phosphorus excretion and ammonia emission. Asian-australas J Anim Sci 12:305–327

    CAS  Google Scholar 

  53. Selle PH, Ravindran V (2007) Microbial phytase in poultry nutrition. Anim Feed Sci Technol 135:1–41. doi:10.1016/j.anifeedsci.2006.06.010

    Article  CAS  Google Scholar 

  54. Cao L, Wang W, Yang C et al (2007) Application of microbial phytase in fish feed. Enzyme Microb Technol 40:497–507. doi:10.1016/j.enzmictec.2007.01.007

    Google Scholar 

  55. Kumar V, Sinha AK, Makkar HPS et al (2012) Phytate and phytase in fish nutrition. J Anim Physiol Anim Nutr 96:335–364. doi:10.1111/j.1439-0396.2011.01169.x

    Article  CAS  Google Scholar 

  56. Kumar V, Sinha AK, Makkar HPS, Becker K (2010) Dietary roles of phytate and phytase in human nutrition: a review. Food Chem 120:945–959. doi:10.1016/j.foodchem.2009.11.052

    Article  CAS  Google Scholar 

  57. Aquilina G, Bories G, Brantom P et al (2010) Scientific opinion on Ronozyme® P (6-phytase) as feed additive for chickens and turkeys for fattening, laying hens, and piglets (weaned), pigs for fattening and sows (poultry and pigs). EFSA J 8(1862):1–27

    Google Scholar 

  58. Roopesh K, Ramachandran S, Nampoothiri KM et al (2005) Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Bioresour Technol 97:506–511. doi:10.1016/j.biortech.2005.02.046

    Article  Google Scholar 

  59. Bogar B, Szakacs G, Linden JC et al (2003) Optimization of phytase production by solid substrate fermentation. J Ind Microbiol Biotechnol 30:183–189.

    CAS  Google Scholar 

  60. Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195–206

    Article  CAS  Google Scholar 

  61. Chen R, Xue G, Chen P et al (2008) Transgenic maize plants expressing a fungal phytase gene. Transgenic Res 17:633–643. doi:10.1007/s11248-007-9138-3

    Article  CAS  Google Scholar 

  62. Gao XR, Wang GK, Su Q et al (2007) Phytase expression in transgenic soybeans: stable transformation with a vector-less construct. Biotechnol Lett 29:1781–1787. doi:10.1007/s10529-007-9439-x

    Article  CAS  Google Scholar 

  63. Hamada A, Yamaguchi K-I, Harada M et al (2006) Recombinant, rice-produced yeast phytase shows the ability to hydrolyze phytate derived from seed-based feed, and extreme stability during ensilage treatment. Biosci Biotechnol Biochem 70:1524–1527. doi:10.1271/bbb.60039

    Article  CAS  Google Scholar 

  64. McCann D, Barrett A, Cooper A et al (2007) Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet 370:1560–1567. doi:10.1016/S0140-6736(07)61306-3

    Article  CAS  Google Scholar 

  65. Ananou S, Maqueda M, Martínez-Bueno M, Valdivia E (2007) Biopreservation, an ecological approach to improve the safety and shelf-life of foods. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology, 2007th edn. Formatex Research Center, Badajoz

    Google Scholar 

  66. Stoyanova LG, Ustyugova EA, Netrusov AI (2012) Antibacterial metabolites of lactic acid bacteria: their diversity and properties. Appl Biochem Microbiol 48:229–243. doi:10.1134/S0003683812030143

    Article  CAS  Google Scholar 

  67. Juneja VK, Dwivedi HP, Yan X (2012) Novel natural food antimicrobials. Ann Rev Food Sci Technol 3:381–403. doi:10.1146/annurev-food-022811-101241

    Article  CAS  Google Scholar 

  68. Takala TM, Saris PEJ (2007) Nisin: past, present, and future. In: Riley MA, Gillor O (eds) Research and applications in bacteriocins. Horizon Bioscience, Norfolk

    Google Scholar 

  69. Callewaert L, Walmagh M, Michiels CW, Lavigne R (2011) Food applications of bacterial cell wall hydrolases. Curr Opin Biotechnol 22:164–171. doi:10.1016/j.copbio.2010.10.012

    Article  CAS  Google Scholar 

  70. Carini S, Mucchetti G, Neviani E (1985) Lysozyme: activity against Clostridia and use in cheese production - a review. Microbiol Aliments Nutr 3:299–320

    CAS  Google Scholar 

  71. Bartowsky EJ (2009) Bacterial spoilage of wine and approaches to minimize it. Lett Appl Microbiol 48:149–156. doi:10.1111/j.1472-765X.2008.02505.x

    Article  CAS  Google Scholar 

  72. Makki F, Durance TD (1996) Thermal inactivation of lysozyme as influenced by pH, sucrose and sodium chloride and inactivation and preservative effect in beer. Food Res Int 29:635–645. doi:10.1016/S0963-9969(96)00074-9

    Article  CAS  Google Scholar 

  73. Takahashi H, Kuramoto S, Miya S et al (2011) Use of commercially available antimicrobial compounds for prevention of Listeria monocytogenes growth in ready-to-eat minced tuna and salmon roe during shelf life. J Food Prot 74:994–998. doi:10.4315/0362-028X.JFP-10-406

    Article  Google Scholar 

  74. Nattress FM, Yost CK, Baker LP (2001) Evaluation of the ability of lysozyme and nisin to control meat spoilage bacteria. Int J Food Microbiol 70:111–119. doi:10.1016/S0168-1605(01)00531-1

    Article  CAS  Google Scholar 

  75. Panesar PS, Panesar R, Singh RS et al (2006) Microbial production, immobilization and applications of β-D-galactosidase. J Chem Technol Biotechnol 81:530–543. doi:10.1002/jctb.1453

    Article  CAS  Google Scholar 

  76. Wu Y, Yuan S, Chen S et al (2013) Enhancing the production of galacto-oligosaccharides by mutagenesis of Sulfolobus solfataricus -galactosidase. Food Chem 138:1588–1595. doi:10.1016/j.foodchem.2012.11.052

    Article  CAS  Google Scholar 

  77. Niehaus F, Eck J (2012) Novel beta-galactosidases useful for the production of lactose depleted milk products. European Patent Application EP2530148 (A1)

    Google Scholar 

  78. Burin L, Jouppila K, Roos YH et al (2004) Retention of -galactosidase activity as related to Maillard reaction, lactose crystallization, collapse and glass transition in low moisture whey systems. Int Dairy J 14:517–525. doi:10.1016/j.idairyj.2003.11.003

    Article  CAS  Google Scholar 

  79. Sabioni JG, Pinheiro AJR, Silva DO et al (1984) Control of lactose crystallization in “Dulce de Leche” by beta-D-galactosidase activity from permeabilized Kluyveromyces lactis cells. J Dairy Sci 67:2210–2215

    Article  CAS  Google Scholar 

  80. Panesar PS, Kumari S, Panesar R (2010) Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Res 2010:1–16. doi:10.4061/2010/473137

    Article  Google Scholar 

  81. Roy I, Gupta MN (2003) Lactose hydrolysis by Lactozym™ immobilized on cellulose beads in batch and fluidized bed modes. Process Biochem 39:325–332. doi:10.1016/S0032-9592(03)00086-4

    Article  CAS  Google Scholar 

  82. Holst HH, Lauritzen K (2010) Process for producing lactose-free milk. European Patent Application EP2207428 (A1)

    Google Scholar 

  83. Shimakura K, Tonomura Y, Hamada Y et al (2005) Allergenicity of crustacean extractives and its reduction by protease digestion. Food Chem 91:247–253. doi:10.1016/j.foodchem.2003.11.010

    Article  CAS  Google Scholar 

  84. Hendriksen HV, Kornbrust BA, Østergaard PR, Stringer MA (2009) Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae. J Agric Food Chem 57:4168–4176. doi:10.1021/jf900174q

    Article  CAS  Google Scholar 

  85. Friedman M, Levin CE (2008) Review of methods for the reduction of dietary content and toxicity of acrylamide. J Agric Food Chem 56:6113–6140. doi:10.1021/jf0730486

    Article  CAS  Google Scholar 

  86. Ciesarová Z, Kukurová K, Bednáriková A et al (2009) Improvement of cereal product safety by enzymatic way of acrylamide mitigation. Czech J Food Sci 27:S96–S98

    Google Scholar 

  87. Filip S, Fink R, Hribar J, Vidrih R (2010) Trans fatty acids in food and their influence on human health. Food Technol Biotech 48:135–142

    CAS  Google Scholar 

  88. Brown PH, Carvallo FD, Dinwoodie RC et al (1994) Enzymatic method for preparing transesterified oils. United States Patent Application US 5288619 (A)

    Google Scholar 

  89. Ptok S, Heseker H (2010) Trans fatty acids. Ernährungs Umschau 57:472–480

    CAS  Google Scholar 

  90. Ming LO, Ghazali HM, Chiew Let C (1999) Use of enzymatic transesterified palm stearin-sunflower oil blends in the preparation of table margarine formulation. Food Chem 64:83–88. doi:10.1016/S0308-8146(98)00083-1

    Article  CAS  Google Scholar 

  91. Zhang H, Xu X, Nilsson J et al (2001) Production of margarine fats by enzymatic interesterification with silica-granulated Thermomyces lanuginosa lipase in a large-scale study. J Am Oil Chem Soc 78:57–64

    Article  CAS  Google Scholar 

  92. Farmani J, Hamedi M, Safari M, Madadlou A (2007) Trans-free Iranian vanaspati through enzymatic and chemical transesterification of triple blends of fully hydrogenated soybean, rapeseed and sunflower oils. Food Chem 102:827–833. doi:10.1016/j.foodchem.2006.06.015

    Article  CAS  Google Scholar 

  93. Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66:524–528. doi:10.1128/AEM.66.2.524-528.2000

    Article  CAS  Google Scholar 

  94. Hoegger PJ, Kilaru S, James TY et al (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326. doi:10.1111/j.1742-4658.2006.05247.x

    Article  CAS  Google Scholar 

  95. Arakane Y, Muthukrishnan S, Beeman RW et al (2005) Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc Natl Acad Sci U S A 102:11337–11342. doi:10.1073/pnas.0504982102

    Article  CAS  Google Scholar 

  96. Claus H (2004) Laccases: structure, reactions, distribution. Micron 35:93–96. doi:10.1016/j.micron.2003.10.029

    Article  CAS  Google Scholar 

  97. Gavnholt B, Larsen K (2002) Molecular biology of plant laccases in relation to lignin formation. Physiol Plant 116:273–280. doi:10.1034/j.1399-3054.2002.1160301.x

    Article  CAS  Google Scholar 

  98. Osma JF, Toca-Herrera JL, Rodríguez Couto S (2010) Uses of laccases in the food industry. Enzyme Res 2010: Article ID 918761–8 pages. doi:10.4061/2010/918761

  99. Rodríguez Couto S, Toca Herrera JL (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513. doi:10.1016/j.biotechadv.2006.04.003

    Article  Google Scholar 

  100. Minussi RC, Pastore GM, Durán N (2002) Potential applications of laccase in the food industry. Trends Food Sci Technol 13:205–216. doi:10.1016/S0924-2244(02)00155-3

    Article  CAS  Google Scholar 

  101. Sponholz W-R (2000) Suberase: Eine biotechnologische Möglichkeit Korken zu reinigen. Schweiz Z Obst-Weinbau 24:621–625

    Google Scholar 

  102. Schroeder M, Pollinger-Zierler B, Aichernig N et al (2008) Enzymatic removal of off-flavors from apple juice. J Agric Food Chem 56:2485–2489. doi:10.1021/jf073303m

    Article  CAS  Google Scholar 

  103. Giovanelli G, Ravasini G (1993) Apple juice stabilization by combined enzyme-membrane filtration process. Lebensm-Wiss u-Technol 26:1–7

    Article  CAS  Google Scholar 

  104. Bouwens EC, Trivedi K, van Vliet C, Winkel C (1999) Method of enhancing color in a tea-based foodstuff. United States Patent Application US 5879730

    Google Scholar 

  105. Flander L, Rouau X, Morel M-H et al (2008) Effects of laccase and xylanase on the chemical and rheological properties of oat and wheat doughs. J Agric Food Chem 56:5732–5742. doi:10.1021/jf800264a

    Article  CAS  Google Scholar 

  106. Renzetti S, Courtin CM, Delcour JA, Arendt EK (2010) Oxidative and proteolytic enzyme preparations as promising improvers for oat bread formulations: Rheological, biochemical and microstructural background. Food Chem 119:1465–1473. doi:10.1016/j.foodchem.2009.09.028

    Article  CAS  Google Scholar 

  107. Selinheimo E, Kruus K, Buchert J et al (2006) Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs. J Cereal Sci 43:152–159. doi:10.1016/j.jcs.2005.08.007

    Article  CAS  Google Scholar 

  108. Szweda RT, Schmidt K, Zorn H (2013) Bleaching of colored whey and milk by a multiple-enzyme system. Eur Food Res Technol. doi:10.1007/s00217-013-2000-3

    Google Scholar 

  109. Berger RG (2009) Biotechnology of flavours—the next generation. Biotechnol Lett 31:1651–1659. doi:10.1007/s10529-009-0083-5

    Article  CAS  Google Scholar 

  110. Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314. doi:10.1007/s002530100687

    Article  CAS  Google Scholar 

  111. Zorn H, Fraatz MA et al (2012) Enzymatic synthesis of nootkatone. US Patent Application US 2012/0045806 A1

    Google Scholar 

  112. Fraatz MA, Riemer SJL et al (2009) A novel oxygenase from Pleurotus sapidus transforms valencene to nootkatone. J Mol Catal B Enzym 61:202–207. doi:10.1016/j.molcatb.2009.07.001

    Article  CAS  Google Scholar 

  113. Krügener S, Krings U, Zorn H, Berger RG (2010) A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation. Bioresour Technol 101:457–462. doi:10.1016/j.biortech.2009.08.087

    Article  Google Scholar 

  114. Zelena K, Krings U, Berger RG (2012) Functional expression of a valencene dioxygenase from Pleurotus sapidus in E. coli. Bioresour Technol 108:231–239. doi:10.1016/j.biortech.2011.12.097

    Article  CAS  Google Scholar 

  115. Plagemann I, Zelena K, Arendt P et al (2013) LOXPsa1, the first recombinant lipoxygenase from a basidiomycete fungus. J Mol Catal B Enzym 87:99–104. doi:10.1016/j.molcatb.2012.11.004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the excellence initiative of the Hessian Ministry of Science and Art, which provides a generous grant for the Landes-Offensive zur Entwicklung Wissenschaftlich-Ökonomischer Exzellenz (LOEWE) research focus of insect biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Zorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fraatz, M.A., Rühl, M., Zorn, H. (2013). Food and Feed Enzymes. In: Zorn, H., Czermak, P. (eds) Biotechnology of Food and Feed Additives. Advances in Biochemical Engineering/Biotechnology, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_235

Download citation

Publish with us

Policies and ethics