Skip to main content

Conclusion and Future Opportunities

  • Chapter
  • First Online:
Flexible Sensors for Energy-Harvesting Applications

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 42))

  • 494 Accesses

Abstract

The significance of flexible sensors has been extremely significant in the case of energy-harvesting applications. Flexile sensors with varied electromechanical properties have been utilized for piezoelectric, triboelectric and pyroelectric-sensing applications. This chapter concludes the research work explained in the preceding chapters by highlighting some of the essential characteristics of the flexible sensors. The chapter also elucidates the future opportunities of flexible sensors for real-time energy-harvesting and other related applications. It explains some of the possible steps that can be followed to enhance the quality of these sensors so that they can be commercialized and used as point-of-care devices. The availability of the raw materials that are being processed to form the three types of energy-harvesting devices has been showcased with an estimation of their future trend in the next few years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Su et al., Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a review. Nanoscale Res. Lett. 15(1), 1–34 (2020)

    Article  CAS  Google Scholar 

  2. A. Nag, S.C. Mukhopadhyay, J. Kosel, Wearable flexible sensors: a review. IEEE Sens. J. 17(13), 3949–3960 (2017)

    Article  CAS  Google Scholar 

  3. L. Guadagno, P. Lamberti, V. Tucci, L. Vertuccio, Self-sensing nanocomposites for structural applications: choice criteria. Nanomaterials 11(4), 833 (2021)

    Article  CAS  Google Scholar 

  4. A. Mehmood et al., Graphene based nanomaterials for strain sensor application—a review. J. Environ. Chem. Eng. 8(3), 103743 (2020)

    Google Scholar 

  5. T.T.V. Phan, T.-C. Huynh, P. Manivasagan, S. Mondal, J. Oh, An up-to-date review on biomedical applications of palladium nanoparticles. Nanomaterials 10(1), 66 (2020)

    Article  CAS  Google Scholar 

  6. M.A.A. Mamun, M.R. Yuce, Recent progress in nanomaterial enabled chemical sensors for wearable environmental monitoring applications. Adv. Func. Mater. 30(51), 2005703 (2020)

    Article  CAS  Google Scholar 

  7. B. Peng, F. Zhao, J. Ping, Y. Ying, Recent advances in nanomaterial-enabled wearable sensors: material synthesis, sensor design, and personal health monitoring. Small 16(44), 2002681 (2020)

    Article  CAS  Google Scholar 

  8. X. Hu, Z. Ding, L. Fei, Y. Xiang, Wearable piezoelectric nanogenerators based on reduced graphene oxide and in situ polarization-enhanced PVDF-TrFE films. J. Mater. Sci. 54(8), 6401–6409 (2019)

    Article  CAS  Google Scholar 

  9. G. Wang et al., Flexible pressure sensor based on PVDF nanofiber. Sens. Actuators, A 280, 319–325 (2018)

    Article  CAS  Google Scholar 

  10. V. Consonni, A.M. Lord, Polarity in ZnO nanowires: a critical issue for piezotronic and piezoelectric devices Nano Energy, 105789 (2021)

    Google Scholar 

  11. A.T. Le, M. Ahmadipour, S.-Y. Pung, A review on ZnO-based piezoelectric nanogenerators: Synthesis, characterization techniques, performance enhancement and applications. J. Alloys Comp. 844, 156172 (2020)

    Google Scholar 

  12. Y. Zhou, W. Deng, J. Xu, J. Chen, Engineering materials at the nanoscale for triboelectric nanogenerators. Cell Rep. Phys. Sci. 100142 (2020)

    Google Scholar 

  13. R. Zhang, H. Olin, Material choices for triboelectric nanogenerators: a critical review. EcoMat 2(4), e12062 (2020)

    Google Scholar 

  14. J. Zhao et al., Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy 61, 111–118 (2019)

    Article  CAS  Google Scholar 

  15. V. Vivekananthan, A. Chandrasekhar, N.R. Alluri, Y. Purusothaman, G. Khandelwal, S.-J. Kim, Triboelectric nanogenerators: design, fabrication, energy harvesting, and portable-wearable applications, in Nanogenerators: IntechOpen (2020)

    Google Scholar 

  16. Y. Wu, Y. Luo, J. Qu, W.A. Daoud, T. Qi, Sustainable and shape-adaptable liquid single-electrode triboelectric nanogenerator for biomechanical energy harvesting. Nano Energy 75, 105027 (2020)

    Google Scholar 

  17. Y. Chu et al., Theoretical study on the output of contact-separation triboelectric nanogenerators with arbitrary charging and grounding conditions. Nano Energy 106383 (2021)

    Google Scholar 

  18. L. Zhou et al., Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via interface liquid lubrication. Adv. Energy Mater. 10(45), 2002920 (2020)

    Article  CAS  Google Scholar 

  19. W. Sun, Z. Jiang, X. Xu, Q. Han, F. Chu, Harmonic balance analysis of output characteristics of free-standing mode triboelectric nanogenerators. Int. J. Mech. Sci. 106668 (2021)

    Google Scholar 

  20. C. Yuan et al., Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 11(1), 1–8 (2020)

    Article  CAS  Google Scholar 

  21. S. Yan et al., Eggshell membrane and expanded polytetrafluoroethylene piezoelectric-enhanced triboelectric bio-nanogenerators for energy harvesting. Int. J. Energy Res. 45(7), 11053–11064 (2021)

    Article  CAS  Google Scholar 

  22. T. Prada et al., Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O2/Ar plasma etching for triboelectric nanogenerator applications. Nano Res. 1–8 (2021)

    Google Scholar 

  23. X. Ma et al., Energy harvesters based on fluorinated ethylene propylene unipolar ferroelectrets with negative charges. AIP Adv. 9(12), 125334 (2019)

    Google Scholar 

  24. X. Zuo, L. Chen, W. Pan, X. Ma, T. Yang, X. Zhang, Fluorinated polyethylene propylene ferroelectrets with an air-filled concentric tunnel structure: preparation, characterization, and application in energy harvesting. Micromachines 11(12), 1072 (2020)

    Article  Google Scholar 

  25. S.Y. Shin, B. Saravanakumar, A. Ramadoss, S.J. Kim, Fabrication of PDMS-based triboelectric nanogenerator for self-sustained power source application. Int. J. Energy Res. 40(3), 288–297 (2016)

    Article  CAS  Google Scholar 

  26. L. Shi et al., Carbon electrodes enable flat surface PDMS and PA6 triboelectric nanogenerators to achieve significantly enhanced triboelectric performance. Nano Energy 55, 548–557 (2019)

    Article  CAS  Google Scholar 

  27. G. Khandelwal, N.P.M.J. Raj, V. Vivekananthan, S.-J. Kim, Biodegradable metal-organic framework MIL-88A for triboelectric nanogenerator. Iscience 24(2), 102064 (2021)

    Google Scholar 

  28. H. Zhang et al., Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol. Nano Energy 2(5), 693–701 (2013)

    Article  CAS  Google Scholar 

  29. M. Nasr Esfahani, B.E. Alaca, A review on size‐dependent mechanical properties of nanowires. Adv. Eng. Mater. 21(8), 1900192 (2019)

    Google Scholar 

  30. T. Sannicolo, M. Lagrange, A. Cabos, C. Celle, J.P. Simonato, D. Bellet, Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12(44), 6052–6075 (2016)

    Article  CAS  Google Scholar 

  31. M.R. Mohammad, D.S. Ahmed, M.K. Mohammed, ZnO/Ag nanoparticle-decorated single-walled carbon nanotubes (SWCNTs) and their properties. Surf. Rev. Lett. 27(03), 1950123 (2020)

    Article  CAS  Google Scholar 

  32. N. Elahi, M. Kamali, M.H. Baghersad, Recent biomedical applications of gold nanoparticles: a review. Talanta 184, 537–556 (2018)

    Article  CAS  Google Scholar 

  33. A. Nag, M. Alahi, E. Eshrat, S.C. Mukhopadhyay, Z. Liu, Multi-walled carbon nanotubes-based sensors for strain sensing applications. Sensors 21(4), 1261 (2021)

    Article  CAS  Google Scholar 

  34. T. Han, A. Nag, S.C. Mukhopadhyay, Y. Xu, Carbon nanotubes and its gas-sensing applications: a review. Sens. Actuators, A Phys. 291, 107–143 (2019)

    Article  CAS  Google Scholar 

  35. G. Liu et al., A flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things. Sensors 18(5), 1400 (2018)

    Article  CAS  Google Scholar 

  36. G. Khurana, S. Sahoo, S. Barik, N. Kumar, G. Sharma, Reduced graphene oxide as an ex-cellent temperature sensor. J Nanosci Nanotechnol 2, 101 (2018)

    CAS  Google Scholar 

  37. A. Ali et al., Mechanical pressure characterization of CNT-graphene composite material. Micromachines 11(11), 1000 (2020)

    Article  Google Scholar 

  38. M. Prosheva, M. Ehsani, B.T. Pérez-Martínez, J.B. Gilev, Y. Joseph, R. Tomovska, Dry sonication process for preparation of hybrid structures based on graphene and carbon nanotubes usable for chemical sensors. Nanotechnology 32(21), 215601 (2021)

    Google Scholar 

  39. S. Mohammadi, A. Khodayari, Pyroelectric energy harvesting: with thermodynamic-based cycles. Smart Mater. Res. 2012 (2012)

    Google Scholar 

  40. T. Zhang, T. Yang, M. Zhang, C.R. Bowen, Y. Yang, Recent progress in hybridized nanogenerators for energy scavenging. Iscience 101689 (2020)

    Google Scholar 

  41. W. Xu, L.B. Huang, M.C. Wong, L. Chen, G. Bai, J. Hao, Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors. Adv. Energy Mater. 7(1), 1601529 (2017)

    Article  CAS  Google Scholar 

  42. J. Zhu et al., Progress in TENG technology—a journey from energy harvesting to nanoenergy and nanosystem. EcoMat 2(4), e12058 (2020)

    Google Scholar 

  43. C. Xu, Y. Song, M. Han, H. Zhang, Portable and wearable self-powered systems based on emerging energy harvesting technology. Microsyst. Nanoeng. 7(1), 1–14 (2021)

    Article  Google Scholar 

  44. M. Magno, G.A. Salvatore, P. Jokic, L. Benini, Self-sustainable smart ring for long-term monitoring of blood oxygenation. IEEE Access 7, 115400–115408 (2019)

    Article  Google Scholar 

  45. A. Petritz et al., Imperceptible energy harvesting device and biomedical sensor based on ultraflexible ferroelectric transducers and organic diodes. Nat. Commun. 12(1), 1–14 (2021)

    Article  CAS  Google Scholar 

  46. Y.H. Kwak, W. Kim, K.B. Park, K. Kim, S. Seo, Flexible heartbeat sensor for wearable device. Biosens. Bioelectron. 94, 250–255 (2017)

    Article  CAS  Google Scholar 

  47. T.V. Tran, W.-Y. Chung, High-efficient energy harvester with flexible solar panel for a wearable sensor device. IEEE Sens. J. 16(24), 9021–9028 (2016)

    Article  CAS  Google Scholar 

  48. G. Rong, Y. Zheng, M. Sawan, Energy solutions for wearable sensors: a review. Sensors 21(11), 3806 (2021)

    Article  Google Scholar 

  49. Y. Liu et al., Piezoelectric energy harvesting for self‐powered wearable upper limb applications. Nano Select (2021)

    Google Scholar 

  50. J. Wang et al., Flexible and wearable PDMS-based triboelectric nanogenerator for self-powered tactile sensing. Nanomaterials 9(9), 1304 (2019)

    Article  CAS  Google Scholar 

  51. X. Pu et al., Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017)

    Google Scholar 

  52. N.I. Kim et al., Highly-sensitive skin-attachable eye-movement sensor using flexible nonhazardous piezoelectric thin film. Adv. Func. Mater. 31(8), 2008242 (2021)

    Article  CAS  Google Scholar 

  53. D. Laqua, S. Hampl, M. Hoffmann, P. Husar, Proof of concept for energy harvesting using piezoelectric microstructures for intelligent implants using eye-motion classified with the Integrated Eyetracker, in World Congress on Medical Physics and Biomedical Engineering May 26–31, 2012, Beijing, China, pp. 1397–1400 (Springer, 2013)

    Google Scholar 

  54. M. Yuan, C. Li, H. Liu, Q. Xu, Y. Xie, A 3D-printed acoustic triboelectric nanogenerator for quarter-wavelength acoustic energy harvesting and self-powered edge sensing. Nano Energy 85, 105962 (2021)

    Google Scholar 

  55. Y.H. Jung et al., Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater. 32(35), 1904020 (2020)

    Article  CAS  Google Scholar 

  56. S. Khalid, I. Raouf, A. Khan, N. Kim, H.S. Kim, A review of human-powered energy harvesting for smart electronics: recent progress and challenges. Int. J. Precis. Eng. Manuf. Green Technol. 6(4), 821–851 (2019)

    Article  Google Scholar 

  57. L. Xie, G. Huang, L. Huang, S. Cai, X. Li, An unpowered flexible lower limb exoskeleton: walking assisting and energy harvesting. IEEE/ASME Trans. Mechatron. 24(5), 2236–2247 (2019)

    Article  Google Scholar 

  58. I. Choudhry, H.R. Khalid, H.-K. Lee, Flexible piezoelectric transducers for energy harvesting and sensing from human kinematics. ACS Appl. Electron. Mater. 2(10), 3346–3357 (2020)

    Article  CAS  Google Scholar 

  59. T. Xie, Q. Liu, G. Xue, X. Gou, Numerical analysis of piezoelectric and mechanical response of buckled poly (vinylidene fluoride) nanofibers for the design of highly stretchable electronics. J. Mater. Sci. 55, 10668–10677 (2020)

    Article  CAS  Google Scholar 

  60. S. Wang, L. Ding, X. Fan, W. Jiang, X. Gong, A liquid metal-based triboelectric nanogenerator as stretchable electronics for safeguarding and self-powered mechanosensing. Nano Energy 53, 863–870 (2018)

    Article  CAS  Google Scholar 

  61. M. Ma et al., Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 11(6), 2951–2969 (2018)

    Article  CAS  Google Scholar 

  62. J. Wen et al., Harsh-environmental-resistant triboelectric nanogenerator and its applications in autodrive safety warning. Adv. Energy Mater. 8(29), 1801898 (2018)

    Article  CAS  Google Scholar 

  63. Z. Xie et al., Triboelectric rotational speed sensor integrated into a bearing: A solid step to industrial application. Extreme Mech. Lett. 34, 100595 (2020)

    Google Scholar 

  64. G.B. Lucas, B.A. de Castro, M.A. Rocha, A.L. Andreoli, Three-phase induction motor loading estimation based on Wavelet Transform and low-cost piezoelectric sensors. Measurement 164, 107956 (2020)

    Google Scholar 

  65. T. Xiao, C. Qian, R. Yin, K. Wang, Y. Gao, F. Xuan, 3D printing of flexible strain sensor array based on UV‐curable multiwalled carbon nanotube/elastomer composite. Adv. Mater. Technol. 2000745 (2020)

    Google Scholar 

  66. S. He, S. Feng, A. Nag, N. Afsarimanesh, T. Han, S.C. Mukhopadhyay, Recent progress in 3D printed mold-based sensors. Sensors 20(3), 703 (2020)

    Article  Google Scholar 

  67. S. Khan, L. Lorenzelli, R.S. Dahiya, Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15(6), 3164–3185 (2014)

    Article  Google Scholar 

  68. Q. Li et al., Review of printed electrodes for flexible devices. Front. Mater. 5, 77 (2019)

    Article  Google Scholar 

  69. C. Covaci, A. Gontean, Piezoelectric energy harvesting solutions: a review. Sensors 20(12), 3512 (2020)

    Article  CAS  Google Scholar 

  70. L. Lu, W. Ding, J. Liu, B. Yang, Flexible PVDF based piezoelectric nanogenerators. Nano Energy 105251 (2020)

    Google Scholar 

  71. K.K. Sappati, S. Bhadra, Piezoelectric polymer and paper substrates: a review. Sensors 18(11), 3605 (2018)

    Article  CAS  Google Scholar 

  72. D. Godwinraj, S.C. George, Recent advancement in TENG polymer structures and energy efficient charge control circuits. Adv. Ind. Eng. Polym. Res. (2021)

    Google Scholar 

  73. J. Odent, J.-M. Raquez, P. Dubois, E.P. Giannelis, Ultra-stretchable ionic nanocomposites: from dynamic bonding to multi-responsive behavior. J. Mater. Chem. A 5(26), 13357–13363 (2017)

    Article  CAS  Google Scholar 

  74. Y. Zi et al., Triboelectric–pyroelectric–piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 27(14), 2340–2347 (2015)

    Article  CAS  Google Scholar 

  75. Triboelectric Energy Harvesting and Sensing (TENG) 2020–2040(2020). https://www.idtechex.com/en/research-report/triboelectric-energy-harvesting-and-sensing-teng-2020-2040/720

  76. Triboelectric Nanogenerator Market—Forecasts from 2020 to 2025 (2020). https://www.researchandmarkets.com/reports/5238716/triboelectric-nanogenerator-market-forecasts

  77. Piezoelectric Sensor Market (2019). https://www.profsharemarketresearch.com/piezoelectric-sensor-market-report/

  78. Pyroelectric Infrared Sensors Market (2019). https://www.transparencymarketresearch.com/pyro-electric-infrared-sensors-market.html

Download references

Funding

This study was funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as part of Germany's Excellence Strategy—EXC 2050/1—Project ID 390696704—Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI) of Technische Universität Dresden.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nag, A., Mukhopadhyay, S.C. (2022). Conclusion and Future Opportunities. In: Nag, A., Mukhopadhyay, S.C. (eds) Flexible Sensors for Energy-Harvesting Applications. Smart Sensors, Measurement and Instrumentation, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-99600-0_11

Download citation

Publish with us

Policies and ethics