Skip to main content
Log in

A Novel and Efficient Quantum Private Comparison Scheme

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A quantum private comparison is a primitive protocol of secure multiparty quantum computation that enables two parties to privately decide whether x = y or not, given two integers x and y, that are held as private inputs by the two parties, respectively. However, many existing quantum private comparison schemes may not be efficient enough, especially applied in big-data and large-scale network environments, because of low efficiency bit-by-bit comparisons. In this paper, we present a novel and efficient quantum private comparison scheme. The proposed scheme provides higher communication efficiency because a secret-by-secret comparison instead of a bit-by-bit comparison is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Yao, in Proceedings of 23rd Annual IEEE Symposium on Foundations of Computer Science (Washington, DC, USA, Nov. 3–5, 1982), p. 160.

  2. C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India, 1984), p. 175.

  3. H. K. Lo, Phys. Rev. A 56, 1154 (1997).

    Article  ADS  Google Scholar 

  4. R. Colbeck, Phys. Rev. A 76, 062308 (2007).

    Article  ADS  Google Scholar 

  5. H. Buhrman, M. Christandl and C. Schaffner, Phys. Rev. Lett. 109, 160501 (2012).

    Article  ADS  Google Scholar 

  6. Y. G. Yang and Q. Y. Wen, J. Phys. A Math. Theor. 42, 055305 (2009).

    Article  ADS  Google Scholar 

  7. W. W. Zhang, D. Li, K. J. Zhang and H. J. Zuo, Quantum Inf. Process 12, 2241 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  8. Y. J. Chang, C. W. Tsai and T. Hwang, Quantum Inf. Process 12, 1077 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  9. Y. B. Li et al., Quantum Inf. Process 12, 2191 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  10. Y. B. Li et al., Int. J. Theor. Phys. 52, 2818 (2013).

    Article  Google Scholar 

  11. W. W. Zhang, D. Li, T. T. Song and Y. B. Li, Int. J. Theor. Phys. 52, 1466 (2013).

    Article  Google Scholar 

  12. Z. W. Sun and D. Y. Long, Int. J. Theor. Phys. 52, 212 (2013).

    Article  MathSciNet  Google Scholar 

  13. S. Lin, Y. Sun, X. F. Liu and Z. Q. Yao, Quantum Inf. Process 12, 559 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  14. Q. B. Luo et al., Quantum Inf. Process 13, 2343 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  15. Q. L. Wang, H. X. Sun and W. Huang, Quantum Inf. Process 13, 2375 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Lin, C. W. Yang and T. Hwang, Quantum Inf. Process 13, 239 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  17. Z. W. Sun et al., Quantum Inf. Process 14, 2125 (2015).

    Article  ADS  Google Scholar 

  18. G. P. He, Int. J. Quantum Inf. 15, 1750014 (2017).

    Article  MathSciNet  Google Scholar 

  19. H. M. Pan, Int. J. Theor. Phys. 57, 3389 (2018).

    Article  Google Scholar 

  20. G. P. He, Int. J. Quantum Inf. 11, 1350025 (2013).

    Article  MathSciNet  Google Scholar 

  21. Z. J. Diao, C. F. Huang and K. Wang, Acta Appl. Math. 118, 147 (2012).

    Article  MathSciNet  Google Scholar 

  22. W. Yang, L. S. Huang, R. H. Shi and L. B. He, Quantum Inf. Process 12, 2465 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  23. H. Barnum et al., in Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), edited by C. M. Danielle (Vancouver, BC, Canada, Nov. 19, 2002).

  24. D. Aharonov, M. Ben-Or and E. Eban, https://arxiv.org/abs/0810.5375v2.

  25. K. F. Yu et al., Quantum Inf. Process 13, 1457 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  26. D. J. Guan, Y. J. Wang and E. S. Zhuang, Quantum Inf. Process 13, 2355 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Farouk et al., Sci. Rep. 5, 16080 (2015).

    Article  ADS  Google Scholar 

  28. R. H. Shi et al., Sci. Rep. 5, 15914 (2015).

    Article  ADS  Google Scholar 

  29. R. H. Shi, Int. J. Theor. Phys. 56, 1208 (2017).

    Article  Google Scholar 

  30. H. F. Wang et al., New J. Phys. 13, 013021 (2011).

    Article  ADS  Google Scholar 

  31. X. B. Song et al., Sci. Rep. 5, 14113 (2015).

    Article  ADS  Google Scholar 

  32. N. Bent et al., Phys. Rev. X 5, 041006 (2015).

    Google Scholar 

  33. A. Majumder, S. Mohapatra and A. Kumar, https://arxiv.org/pdf/1707.07460.pdf.

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 61772001), Natural Science Key Fund of Education Department of Anhui Province (No. KJ2018A0823), and Research Project of Hefei Technology College (No. 201814KJB001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-hua Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Shi, Rh. A Novel and Efficient Quantum Private Comparison Scheme. J. Korean Phys. Soc. 75, 15–21 (2019). https://doi.org/10.3938/jkps.75.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.15

Keywords

Navigation