Skip to main content
Log in

Verifiable Quantum Encryption and its Practical Applications

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we present a novel verifiable quantum encryption scheme, in which a sender encrypts a classical plaintext into a quantum ciphertext, such that only a specified receiver can decrypt the ciphertext and further get the plaintext. This scheme can not only ensure the unconditional security of the plaintext, but can also verify the validness of the plaintext. In addition, we consider its practical applications with key reuse and further present a practical application protocol for secure two-party quantum scalar product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shor, P.W.: Algorithms for quantum computation: discrete log and factoring. Proceedings of 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, New Mexico, pp. 124–134. IEEE, New York (1994)

    Book  Google Scholar 

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search. Proceedings of 28th Annual ACM Symposium on Theory of Computing, Coimbra, Portugal, pp. 212–219. ACM, New York (1996)

    Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, pp. 175–179. IEEE, New York (1984)

    Google Scholar 

  4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Hillery, M., Bužek, V., Berthiaume, A.: Quantum Secret Sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  7. Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., Jeffers, J., Buller, G.S.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113(4), 040502 (2014)

    Article  ADS  Google Scholar 

  8. Yu, C.H., Quo, G.D., Lin, S.: Arbitrated quantum signature scheme based on reusable key. Sci. China-Phys. Mech. Astron. 57(11), 2079–2085 (2014)

    Article  ADS  Google Scholar 

  9. Li, F.G., Shi, J.H.: An arbitrated quantum signature protocol based on the chained CNOT operations encryption. Q. Inf. Process. 14(6), 2171–2181 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang, G.X., Zhang, J.: New arbitrated quantum signature scheme without entangled state. Int. J.Secur. Appl. 9(1), 77–88 (2015)

    Google Scholar 

  11. Guo, Y., Feng, Y.Y., Huang, D.Z., Shi, J.J.: Arbitrated quantum signature scheme with continuous-cariable coherent states. Int. J. Theor. Phys. 55(4), 608–619 (2016)

    Article  MATH  Google Scholar 

  12. Zhou, N., Zeng, G., Nie, Y., Xiong, J., Zhu, F.: A novel quantum block encryption algorithm based on quantum computation. Phys. A 362(2), 305–313 (2006)

    Article  Google Scholar 

  13. Dai, W.C., Lu, Y., Zhu, J., Zeng, G.H.: An integrated quantum secure communication system. Sci. China-Inf. Sci. 54(12), 2578–2591 (2011)

    Article  MathSciNet  Google Scholar 

  14. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 12(11), 3477–3493 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Nagy, M., Nagy, N.: General quantum encryption scheme based on quantum memory. Proceedings of Theory and Practice of Natural Computing (TPNC) 2013, LNCS 8273, 169–180 (2013)

  16. Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Yang, Y.G., Pan, Q.X., Sun, S.J., Xu, P.: Novel image encryption based on quantum walks. Sci. Rep. 5, 7784 (2015)

    Article  ADS  Google Scholar 

  18. Diao, Z.J., Huang, C.F., Wang, K.: Quantum counting: Algorithm and error distribution. Acta Appl. Math. 118(1), 147–159 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 042317 (2003)

    Article  ADS  Google Scholar 

  20. He, L.B., Huang, L.S., Yang, W., Xu, R.: A protocol for the secure two-party quantum scalar product. Phys. Lett. A 376(16), 1323–1327 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Holevo, A.: Probabilistic and statistical aspects of quantum theory, Publications of the Scuola Normale Superiore, Springer (2011)

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (61173187) and 211 Project of Anhui University (17110099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-hua Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Rh. Verifiable Quantum Encryption and its Practical Applications. Int J Theor Phys 56, 1208–1217 (2017). https://doi.org/10.1007/s10773-016-3263-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3263-9

Keywords

Navigation