Skip to main content
Log in

Surface pinning effect of an antiferromagnetic interlayer exchange coupling in (Ga1−x Mn x As/GaAs:Be)10 multilayer

  • Brief Reports
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The depth-resolved magnetic configuration of a Ga0.97Mn0.03As/GaAs:Be multilayer with an antiferromagnetic interlayer exchange coupling was investigated using surface-sensitive soft x-ray resonant magnetic reflectivity (XRMR). We observed intriguing opposite increments in the XRMR intensities at the half-Bragg peak position between two different remanent states with opposite field sweep directions. A quantitative analysis shows that these opposite intensity increments result from two different anti-parallel spin configurations in such a way that the magnetization of top-most magnetic layer is pinned along the saturation magnetization direction before the remanent state. This surface pinning effect is important for understanding spin-dependent transport in semiconducting magnetic multilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Awschalom and M. E. Flatte, Nature. Phys. 3, 153 (2007).

    Article  ADS  Google Scholar 

  2. A. H. Macdonald et al., Nature Mater. 4, 195 (2005).

    Article  ADS  Google Scholar 

  3. S. J. Pearton et al., J. Appl. Phys. 93, 1 (2003).

    Article  ADS  Google Scholar 

  4. J.-H. Chung, S. J. Chung et al., Phys. Rev. Lett. 101, 237202 (2008).

    Article  ADS  Google Scholar 

  5. S. Chung, S. Lee et al., Phys. Rev. B. 82, 054420 (2010).

    Article  ADS  Google Scholar 

  6. M. Luo, Z. Tang et al., J. Appl. Phys. 108, 053703 (2010).

    Article  ADS  Google Scholar 

  7. J. Leiner, H. Lee et al., Phys. Rev. B. 82, 195205 (2010).

    Article  ADS  Google Scholar 

  8. B. J. Kirby and J. A. Borchers, Phys. Rev. B. 76, 205316 (2007).

    Article  ADS  Google Scholar 

  9. S. Chung, S. Lee et al., New J. Phys. 15, 123025 (2013).

    Article  ADS  Google Scholar 

  10. S. Chung, S. Lee et al., Jpn. J. Appl. Phys. 54, 033001 (2015).

    Article  ADS  Google Scholar 

  11. J. Park, D. R. Lee et al., Appl. Phys. Lett. 95, 102504 (2009).

    Article  ADS  Google Scholar 

  12. V. Lauter-Pasyuk et al., Phys. Rev. Lett. 89, 167203 (2002).

    Article  ADS  Google Scholar 

  13. J. J. Kavich et al., Phys. Rev. B. 76, 014410 (2007).

    Article  ADS  Google Scholar 

  14. M. Izumi et al., Phys. Rev. B. 64, 064429 (2001).

    Article  ADS  Google Scholar 

  15. J. Grabis et al., Phys. Rev. B. 72, 024438 (2005).

    Article  ADS  Google Scholar 

  16. J. P. Hannon et al., Phys. Rev. Lett. 61, 1245 (1988).

    Article  ADS  Google Scholar 

  17. D. Gibbs et al., Phys. Rev. Lett. 61, 1241 (1988).

    Article  ADS  Google Scholar 

  18. L. G. Parratt, Phys. Rev. 95, 359 (1954).

    Article  ADS  Google Scholar 

  19. S. K. Sinha et al., Phys. Rev. B. 38, 2297 (1988).

    Article  ADS  Google Scholar 

  20. A. Mikkelsen et al., Appl. Phys. Lett. 85, 4660 (2004).

    Article  ADS  Google Scholar 

  21. L. Horák et al., Phys. Rev. B. 83, 245209 (2011).

    Article  ADS  Google Scholar 

  22. P. Colombi et al., J. Appl. Phys. 105, 014307 (2009).

    Article  ADS  Google Scholar 

  23. P. J. Grunthaner et al., J. Vac. Sci. Technol. 17, 1045 (1980).

    Article  ADS  Google Scholar 

  24. C. Spezzani et al., Phys. Rev. B. 66, 052408 (2002).

    Article  ADS  Google Scholar 

  25. M. Hecker et al., Phys. Rev. B. 72, 054437 (2005).

    Article  ADS  Google Scholar 

  26. C. Spezzani et al., Appl. Phys. Lett. 81, 3425 (2002).

    Article  ADS  Google Scholar 

  27. O. Hellwig et al., Nature Matter. 2, 112 (2003).

    Article  ADS  Google Scholar 

  28. V. V. Ustinov et al., Phys. Stat. Sol. 3, 1249 (2006).

    Article  Google Scholar 

  29. V. V. Ustinov et al., J. Magn. Magn. Mater. 300, e281 (2006).

    Article  Google Scholar 

  30. D. R. Lee et al., Phys. Rev. B. 68, 224409 (2003).

    Article  ADS  Google Scholar 

  31. S. A. Stepanov and S. K. Sinha, Phys. Rev. B. 61, 15302 (2000).

    Article  ADS  Google Scholar 

  32. H. J. Lauter et al., Physica B. 335, 59 (2003).

    Article  ADS  Google Scholar 

  33. S. G. E. te Velthuis et al., Phys. Rev. Lett. 89, 127203 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Ryeol Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, BG., Kim, DO., Kim, JY. et al. Surface pinning effect of an antiferromagnetic interlayer exchange coupling in (Ga1−x Mn x As/GaAs:Be)10 multilayer. Journal of the Korean Physical Society 71, 121–125 (2017). https://doi.org/10.3938/jkps.71.121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.71.121

Keywords

Navigation