Advertisement

Journal of the Korean Physical Society

, Volume 71, Issue 2, pp 121–125 | Cite as

Surface pinning effect of an antiferromagnetic interlayer exchange coupling in (Ga1−x Mn x As/GaAs:Be)10 multilayer

  • Byeong-Gwan Cho
  • Dong-Ok Kim
  • Jae-Young Kim
  • Jae-Ho Chung
  • Sanghoon Lee
  • Yongseong Choi
  • Jun Woo Choi
  • Dong Ryeol Lee
  • Ki Bong Lee
Brief Reports
  • 70 Downloads

Abstract

The depth-resolved magnetic configuration of a Ga0.97Mn0.03As/GaAs:Be multilayer with an antiferromagnetic interlayer exchange coupling was investigated using surface-sensitive soft x-ray resonant magnetic reflectivity (XRMR). We observed intriguing opposite increments in the XRMR intensities at the half-Bragg peak position between two different remanent states with opposite field sweep directions. A quantitative analysis shows that these opposite intensity increments result from two different anti-parallel spin configurations in such a way that the magnetization of top-most magnetic layer is pinned along the saturation magnetization direction before the remanent state. This surface pinning effect is important for understanding spin-dependent transport in semiconducting magnetic multilayers.

Keywords

Dilute magnetic semiconductors Magnetic multilayer Interlayer exchange coupling X-ray resonant magnetic reflectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. D. Awschalom and M. E. Flatte, Nature. Phys. 3, 153 (2007).ADSCrossRefGoogle Scholar
  2. [2]
    A. H. Macdonald et al., Nature Mater. 4, 195 (2005).ADSCrossRefGoogle Scholar
  3. [3]
    S. J. Pearton et al., J. Appl. Phys. 93, 1 (2003).ADSCrossRefGoogle Scholar
  4. [4]
    J.-H. Chung, S. J. Chung et al., Phys. Rev. Lett. 101, 237202 (2008).ADSCrossRefGoogle Scholar
  5. [5]
    S. Chung, S. Lee et al., Phys. Rev. B. 82, 054420 (2010).ADSCrossRefGoogle Scholar
  6. [6]
    M. Luo, Z. Tang et al., J. Appl. Phys. 108, 053703 (2010).ADSCrossRefGoogle Scholar
  7. [7]
    J. Leiner, H. Lee et al., Phys. Rev. B. 82, 195205 (2010).ADSCrossRefGoogle Scholar
  8. [8]
    B. J. Kirby and J. A. Borchers, Phys. Rev. B. 76, 205316 (2007).ADSCrossRefGoogle Scholar
  9. [9]
    S. Chung, S. Lee et al., New J. Phys. 15, 123025 (2013).ADSCrossRefGoogle Scholar
  10. [10]
    S. Chung, S. Lee et al., Jpn. J. Appl. Phys. 54, 033001 (2015).ADSCrossRefGoogle Scholar
  11. [11]
    J. Park, D. R. Lee et al., Appl. Phys. Lett. 95, 102504 (2009).ADSCrossRefGoogle Scholar
  12. [12]
    V. Lauter-Pasyuk et al., Phys. Rev. Lett. 89, 167203 (2002).ADSCrossRefGoogle Scholar
  13. [13]
    J. J. Kavich et al., Phys. Rev. B. 76, 014410 (2007).ADSCrossRefGoogle Scholar
  14. [14]
    M. Izumi et al., Phys. Rev. B. 64, 064429 (2001).ADSCrossRefGoogle Scholar
  15. [15]
    J. Grabis et al., Phys. Rev. B. 72, 024438 (2005).ADSCrossRefGoogle Scholar
  16. [16]
    J. P. Hannon et al., Phys. Rev. Lett. 61, 1245 (1988).ADSCrossRefGoogle Scholar
  17. [17]
    D. Gibbs et al., Phys. Rev. Lett. 61, 1241 (1988).ADSCrossRefGoogle Scholar
  18. [18]
    L. G. Parratt, Phys. Rev. 95, 359 (1954).ADSCrossRefGoogle Scholar
  19. [19]
    S. K. Sinha et al., Phys. Rev. B. 38, 2297 (1988).ADSCrossRefGoogle Scholar
  20. [20]
    A. Mikkelsen et al., Appl. Phys. Lett. 85, 4660 (2004).ADSCrossRefGoogle Scholar
  21. [21]
    L. Horák et al., Phys. Rev. B. 83, 245209 (2011).ADSCrossRefGoogle Scholar
  22. [22]
    P. Colombi et al., J. Appl. Phys. 105, 014307 (2009).ADSCrossRefGoogle Scholar
  23. [23]
    P. J. Grunthaner et al., J. Vac. Sci. Technol. 17, 1045 (1980).ADSCrossRefGoogle Scholar
  24. [24]
    C. Spezzani et al., Phys. Rev. B. 66, 052408 (2002).ADSCrossRefGoogle Scholar
  25. [25]
    M. Hecker et al., Phys. Rev. B. 72, 054437 (2005).ADSCrossRefGoogle Scholar
  26. [26]
    C. Spezzani et al., Appl. Phys. Lett. 81, 3425 (2002).ADSCrossRefGoogle Scholar
  27. [27]
    O. Hellwig et al., Nature Matter. 2, 112 (2003).ADSCrossRefGoogle Scholar
  28. [28]
    V. V. Ustinov et al., Phys. Stat. Sol. 3, 1249 (2006).CrossRefGoogle Scholar
  29. [29]
    V. V. Ustinov et al., J. Magn. Magn. Mater. 300, e281 (2006).CrossRefGoogle Scholar
  30. [30]
    D. R. Lee et al., Phys. Rev. B. 68, 224409 (2003).ADSCrossRefGoogle Scholar
  31. [31]
    S. A. Stepanov and S. K. Sinha, Phys. Rev. B. 61, 15302 (2000).ADSCrossRefGoogle Scholar
  32. [32]
    H. J. Lauter et al., Physica B. 335, 59 (2003).ADSCrossRefGoogle Scholar
  33. [33]
    S. G. E. te Velthuis et al., Phys. Rev. Lett. 89, 127203 (2002).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2017

Authors and Affiliations

  • Byeong-Gwan Cho
    • 1
  • Dong-Ok Kim
    • 2
    • 3
  • Jae-Young Kim
    • 4
  • Jae-Ho Chung
    • 5
  • Sanghoon Lee
    • 5
  • Yongseong Choi
    • 6
  • Jun Woo Choi
    • 3
  • Dong Ryeol Lee
    • 7
  • Ki Bong Lee
    • 1
    • 4
  1. 1.Department of PhysicsPohang University of Science and TechnologyPohangKorea
  2. 2.Department of PhysicsSoongsil UniversitySeoulKorea
  3. 3.Center for SpintronicsKorea Institute of Science and TechnologySeoulKorea
  4. 4.Pohang Accelerator LaboratoryPohang University of Science and TechnologyPohangKorea
  5. 5.Department of PhysicsKorea UniversitySeoulKorea
  6. 6.Advanced Photon SourceArgonne National LaboratoryArgonneUSA
  7. 7.Department of PhysicsSoongsil UniversitySeoulKorea

Personalised recommendations