Skip to main content
Log in

Effects of interfacial roughness on the GMR of Ta/Co/Ta multilayers studied by neutron reflectometer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To study the effects of the roughness of magnetic nano-multilayer films on the giant magnetoresistance (GMR) performance, we used magnetron sputtering to prepare Ta/Co/Ta films with different Co thicknesses on a silicon substrate. The surface and interfacial roughness of the multilayer films were investigated using atomic force microscopy (AFM) and neutron reflectometry. The AFM results with a range of 10 μm indicated that the surface undulation increased with the increment of the Co thickness and the root-mean-square (RMS) roughness increased from 0.48 to 2.26 nm. The neutron reflectometry results proved that the thicker the Co layer, the rougher the interface in the multilayer film, with an increase from 1 to 2.7 nm. The four probe method was used to study the GMR properties of the films. It indicated that the GMR effect was enhanced and the GMR value shifted from − 0.04% to − 1.13% with increasing Co thickness from 6.5 to 20 nm. The enhancement in the GMR effect originated from the thicker Co layer, which led to increasing interfacial roughness, thereby enhancing the spin-dependent scattering of the interface and increasing the absolute value of the GMR. Nevertheless, when the Co thickness increased to 42 nm, the GMR absolute value decreased from 1.13 to 0.8% and the GMR effect was destroyed. This behavior originated from the increased shunt of the ferromagnetic layer and the rougher Ta capping layer increasing the spin-independent scattering center, thereby eventually undermining the GMR effect. Diffusion between the multilayer films was observed using a polarized neutron reflection experiment, further illustrating that the GMR effect could be adjusted by the interfacial roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Ennen, D. Kappe, T. Rempel, C. Glenske, A. Hütten, Sensors (2016). https://doi.org/10.3390/s16060904

    Article  Google Scholar 

  2. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen-Van-Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. (1988). https://doi.org/10.1103/PhysRevLett.61.2472

    Article  Google Scholar 

  3. F. Hiroyasu, M. Seiji, I. Toru, IEEE Trans. Magn. 10(1109/20), 334219 (1994)

    Google Scholar 

  4. M.D. Cubells-Beltr, C. Reig, J. Madrenas, A.D. Marcellis, J. Santos, S. Cardoso, P.P. Freitas, Sensors (2016). https://doi.org/10.3390/s16060939

    Article  Google Scholar 

  5. A.A. Lachinov, D.D. Karamov, A.N. Lachinov, Semiconductors (2021). https://doi.org/10.1134/S1063782621020184

    Article  Google Scholar 

  6. I. Bakonyi, E. Simon, B.G. Toth, L. Peter, L.F. Kiss, Phys. Rev. B (2009). https://doi.org/10.1103/PhysRevB.79.174421

    Article  Google Scholar 

  7. L. Mekala, P.V. Muhammed-Shameem, M. Senthil-Kumar, AIP Conf. Proc. (2017). https://doi.org/10.1063/1.4980759

    Article  Google Scholar 

  8. E.Y. Tsymbal, D.G. Pettifor, Solid State Phys. (2001). https://doi.org/10.1016/S0081-1947(01)80019-9

    Article  Google Scholar 

  9. K.B. Fathoni, Y. Sakuraba, T. Sasaki, Y. Miura, K. Hono, APL Mater. (2019). https://doi.org/10.1063/1.5119370

    Article  Google Scholar 

  10. W. Jiang, L.D. Shen, M.Y. Xu, J. Zhu, Z.J. Tian, Int. J. Electrochem. Sci. (2018). https://doi.org/10.20964/2018.10.24

    Article  Google Scholar 

  11. M. Kac, A. Dobrowolska, A. Polit, J. Zukrowski, M. Marszalek, J. Alloy. Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.153877

    Article  Google Scholar 

  12. S.A. Chuprakov, N.S. Bannikova, I.V. Blinov, T.P. Krinitsina, M.A. Milyaev, V.V. Popov, M.V. Ryabukhina, V.V. Ustinov, Phys. Met. Metall. (2018). https://doi.org/10.1134/S0031918X18040038

    Article  Google Scholar 

  13. B. Dieny, J. Magn. Magn. Mater. (1994). https://doi.org/10.1016/0304-8853(94)00356-4

    Article  Google Scholar 

  14. M. Kac, A. Polit, A. Dobrowolska, Y. Zabila, M. Krupinski, M. Marszalek, Thin Solid Films (2013). https://doi.org/10.1016/j.tsf.2013.06.051

    Article  Google Scholar 

  15. B.G. Tóth, L. Péter, I. Bakonyi, J. Electrochem. Soc. (2011). https://doi.org/10.1149/2.064111jes

    Article  Google Scholar 

  16. E.F. Fullerton, D.M. Kelly, J. Guimpel, I.K. Schuller, Y. Bruynseraede, Phys. Rev. Lett. (1992). https://doi.org/10.1103/PhysRevLett.68.859

    Article  Google Scholar 

  17. A. Paul, A. Gupta, S.M. Chaudhari, D.M. Phase, Vacuum (2001). https://doi.org/10.1016/S0042-207X(00)00224-4

    Article  Google Scholar 

  18. M. Kamiko, H. Mizuno, H. Chihaya, J. Xu, I. Kojima, R. Yamamoto, Solid State Commun. (2005). https://doi.org/10.1016/j.ssc.2005.03.032

    Article  Google Scholar 

  19. S. Singh, S. Basu, Curr. Appl. Phys. (2017). https://doi.org/10.1016/j.cap.2017.02.017

    Article  Google Scholar 

  20. D. Solina, W. Schmidt, R. Kaltofen, C. Krien, C.H. Lai, A. Schreyer, Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab1318

    Article  Google Scholar 

  21. G.P. Felcher, R.O. Hilleke, R.K. Crawford, J. Haumann, R. Kleb, G. Ostrowski, Rev. Sci. Instrum. (1987). https://doi.org/10.1063/1.1139225

    Article  Google Scholar 

  22. A. Koutsioubas, J. Appl. Crystallogr. (2019). https://doi.org/10.1107/S1600576719003534

    Article  Google Scholar 

  23. S. Singh, M. Swain, S. Basu, Prog. Mater. Sci. (2018). https://doi.org/10.1016/j.pmatsci.2018.03.005

    Article  Google Scholar 

  24. D. Bhattacharya, S. Basu, S. Singh, S. Roy, B.N. Devb, Appl. Surf. Sci. (2012). https://doi.org/10.1016/j.apsusc.2012.09.132

    Article  Google Scholar 

  25. G.P. Felcher, Phys. B (1993). https://doi.org/10.1016/0921-4526(93)90115-M

    Article  Google Scholar 

  26. S. Nazir, M. Behtash, J. Cheng, J. Luo, K. Yang, Phys. Chem. Chem. Phys. (2016). https://doi.org/10.1039/c5cp05100b

    Article  Google Scholar 

  27. T. Ishibashi, M. Naganuma, S. Tang, T. Honma, T. Komatsu, K. Machida, K. Furukawa, K. Aoshima, N. Funabashi, K. Kuga, J. Phys. (2011). https://doi.org/10.1088/1742-6596/303/1/012042

    Article  Google Scholar 

  28. W. Zhang, X.X. Jia, R. Wang, H.H. Liu, Z.Y. Xiao, Z. Quan, X.H. Xu, RSC Adv. (2020). https://doi.org/10.1039/D0RA00459F

    Article  Google Scholar 

  29. B.G. Toth, L. Peter, J. Degi, I. Bakonyi, J. Electrochem. Soc. (2013). https://doi.org/10.1149/2.076308jes

    Article  Google Scholar 

  30. G. Palasantzas, J.T.M. De-Hosson, J. Barnas, Surf. Sci. (2002). https://doi.org/10.1016/S0039-6028(02)01306-7

    Article  Google Scholar 

  31. J.W. Zhao, R. Zhao, Y.K. Huo, W.L. Cheng, Int. J. Heat Mass Transf. (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.045

    Article  Google Scholar 

  32. X.Z. Zhan, G. Li, J.W. Cai, T. Zhu, J.F.K. Cooper, C.J. Kinane, S. Langridge, Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-43251-1

    Article  Google Scholar 

  33. X. Luo, L.T. Tseng, W.T. Lee, T.T. Tan, N.N. Bao, R. Liu, J. Ding, S. Li, V. Lauter, J.B. Yi, Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-06793-w

    Article  Google Scholar 

  34. S.V. Kozhevnikov, F. Ott, F. Radu, Phys. Part. Nucl. (2018). https://doi.org/10.1134/S1063779618020053

    Article  Google Scholar 

  35. D.L. Cortie, K.W. Lin, C. Shueh, H.F. Hsu, X.L. Wang, M. James, H. Fritzsche, S. Brück, F. Klose, Phys. Rev. B (2012). https://doi.org/10.1103/PhysRevB.86.054408

    Article  Google Scholar 

  36. S.V. Kozhevnikov, F. Ott, F. Radu, J. Magn. Magn. Mater. (2016). https://doi.org/10.1016/j.jmmm.2015.11.048

    Article  Google Scholar 

  37. Z.P. Tener, V. Yannello, J. Willis, V.O. Garlea, M. Shatruk, J. Magn. Magn. Mater. (2021). https://doi.org/10.1016/j.jmmm.2021.167827

    Article  Google Scholar 

  38. V.V. Ustinov, A.B. Rinkevich, I.G. Vazhenina, M.A. Milyaev, J. Exp. Theor. Phys. (2020). https://doi.org/10.1134/S1063776120070171

    Article  Google Scholar 

  39. I. Sveklo, Z. Kurant, M. Tekielak, A. Pietruczik, K. Dybko, A. Wawro, A. Maziewski, J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.jmmm.2019.16541

    Article  Google Scholar 

  40. A. Duluard, C. Bellouard, Y. Lu, M. Hehn, D. Lacour, F. Montaigne, G. Lengaigne, S. Andrieu, F. Bonell, C. Tiusan, Phys. Rev. B (2015). https://doi.org/10.1103/physrevb.91.174403

    Article  Google Scholar 

  41. Z.Z. Zhang, H. Zhao, Y. Ren, B. Ma, Q.Y. Jin, Thin Solid Films (2007). https://doi.org/10.1016/j.tsf.2006.09.033

    Article  Google Scholar 

  42. S.D. Jiang, T. Eggers, O. Thiabgoh, D.W. Xing, W.D. Fei, H.X. Shen, J.S. Liu, J.R. Zhang, W.B. Fang, J.F. Sun, H. Srikanth, M.H. Phan, Sci. Rep. (2017). https://doi.org/10.1038/srep46253

    Article  Google Scholar 

  43. J. Barnas, G. Palasantzas, J. Appl. Phys. (1997). https://doi.org/10.1063/1.365702

    Article  Google Scholar 

  44. K. RaTzke, M.J. Hall, D.B. Jardine, W.C. Shih, R.E. Somekh, A.L. Greer, J. Magn. Magn. Mater. (1999). https://doi.org/10.1016/S0304-8853(99)00448-5

    Article  Google Scholar 

  45. F. Trigui, B. Elsafi, Z. Fakhfakh, P. Beauvillain, J. Magn. Magn. Mater. (2010). https://doi.org/10.1016/j.jmmm.2009.10.021

    Article  Google Scholar 

  46. H. Kuru, H. Kockar, M. Alper, J. Magn. Magn. Mater. (2017). https://doi.org/10.1016/j.jmmm.2017.08.019

    Article  Google Scholar 

  47. X.W. Peng, L. Chen, Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab2f58

    Article  Google Scholar 

  48. B. Elsafi, F. Trigui, Z. Fakhfakh, Comput. Mater. Sci. (2010). https://doi.org/10.1016/j.commatsci.2010.09.004

    Article  Google Scholar 

Download references

Funding

This work was supported by the NSF of China (Grant No. 11775181), and the Funded by the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (Grant No. 20fksy23).

Author information

Authors and Affiliations

Authors

Contributions

MM: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data Curation, Writing—Original Draft, Writing—Review & Editing. JS: Formal analysis, Investigation. YW: Formal analysis, Investigation. BD: Formal analysis, Investigation. XL: Formal analysis, Investigation, Resources. YR: Resources, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Yong Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, M., Shen, J., Li, X. et al. Effects of interfacial roughness on the GMR of Ta/Co/Ta multilayers studied by neutron reflectometer. J Mater Sci: Mater Electron 32, 11813–11822 (2021). https://doi.org/10.1007/s10854-021-05811-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05811-y

Navigation