Skip to main content

Metallic Multilayers: Discovery of Interlayer Exchange Coupling and GMR

  • Reference work entry
Handbook of Spintronics

Abstract

The role of magnetic multilayer structures for the emergence of spintronics is discussed. Initial studies of magnetic interactions mainly by Brillouin light scattering lead to the discovery of antiferromagnetic interlayer exchange coupling. The novel possibility to control the relative alignment of spins separated by only a few nanometers with an external magnetic field triggered the first observations of the giant magnetoresistance effect, which then became the cornerstone of spintronics. Both oscillatory interlayer exchange coupling and giant magnetoresistance are introduced, and a picture for their microscopic origin is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMR:

Anisotropic magnetoresistance

B:

Magnetic field

BLS:

Brillouin light scattering

CIP:

Current in plane

CPP:

Current-perpendicular plane

d 0 :

Thickness of spacer layers

d 1, d 2 :

Thickness of ferromagnetic layers

DE:

Damon-Eshbach

DOS:

Density of states

E F :

Fermi energy

E IEC :

IEC energy density

E n :

Discrete energy levels

FM:

Ferromagnetic

GMR:

Giant magnetoresistance

H EB :

Exchange bias field

IEC:

Interlayer exchange coupling

J 1 :

Bilinear IEC parameter

J 2 :

Biquadratic IEC parameter

k :

Perpendicular momentum component

M :

Magnetization

MOKE:

Magneto-optical Kerr effect

N ↑(↓) :

Spin up (down) DOS at Fermi level

NM:

Nonmagnetic

q :

Wave vector

Q :

Critical spanning vector

QWS:

Quantum well states

RKKY:

Ruderman-Kittel-Kasuya-Yosida

r maj(min) :

Resistance of majority (minority) channel

R P(AP) :

Resistance for parallel (antiparallel) alignment

SEMPA:

Scanning electron microscopy with spin analysis

β :

Scattering spin asymmetry parameter

θ :

Angle between magnetizations

References

  1. Sandercock JR (1975) Some recent applications of brillouin scattering in solid state physics. In: Queisser HJ (ed) Advances in solid state physics, vol 15. Vieweg, Braunschweig

    Google Scholar 

  2. Grünberg P, Metawe F (1977) Light scattering from bulk and surface spin waves in EuO. Phys Rev Lett 39:1561–1565

    Article  ADS  Google Scholar 

  3. Damon RW, Eshbach JR (1961) Magnetostatic modes of a ferromagnet slab. J Phys Chem Solids 19:308–320

    Article  ADS  Google Scholar 

  4. Grünberg P, Cottam MG, Vach W, Mayr CM, Camley RE (1982) Brillouin scattering of light by spin waves in thin ferromagnetic films. J Appl Phys 53:2078–2083

    Article  ADS  Google Scholar 

  5. Grünberg P, Schreiber R, Pang Y, Brodsky MB, Sowers H (1986) Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr-interlayer. Phys Rev Lett 57:2442–2445

    Article  ADS  Google Scholar 

  6. Barnas J, Grünberg P (1989) Spin waves in exchange coupled epitaxial double layers. J Magn Magn Mater 82:186–198

    Article  ADS  Google Scholar 

  7. Schäfer R (1995) Magneto-optical domain studies in coupled magnetic multilayers. J Magn Magn Mater 148:226–231

    Article  ADS  Google Scholar 

  8. Pierce DT, Unguris J, Celotta RJ (1994) Investigation of exchange coupled magnetic layers by scanning electron microscopy with polarization analysis (SEMPA) In: Heinrich B, Bland JAC (ed) Ultrathin magnetic structures, vol II. Springer, Berlin

    Google Scholar 

  9. Rührig M, Schäfer R, Hubert A, Mosler R, Wolf JA, Demokritov S, Grünberg P (1991) Domain observations on Fe-Cr-Fe layered structures – evidence for a biquadratic coupling effect. Phys Status Solidi (a) 125:635–656

    Article  ADS  Google Scholar 

  10. Bruno P, Chappert C (1992) Ruderman-Kittel theory of oscillatory interlayer exchange coupling. Phys Rev B 46:261–270

    Article  ADS  Google Scholar 

  11. Demokritov SO (1998) Biquadratic interlayer coupling in layered magnetic systems. J Phys D Appl Phys 31:925–941

    Article  ADS  Google Scholar 

  12. Parkin SSP (1991) Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals. Phys Rev Lett 67:3598–3601

    Article  ADS  Google Scholar 

  13. Bruno P (1995) Theory of interlayer magnetic coupling. Phys Rev B 52:411–439

    Article  ADS  Google Scholar 

  14. Stiles MD (1999) Interlayer exchange coupling. J Magn Magn Mater 200:322–337

    Article  ADS  Google Scholar 

  15. Leng Q, Cros V, Schäfer R, Fuss A, Grünberg P, Zinn W (1993) Interlayer coupling across noble metal spacers. J Magn Magn Mater 126:367–373

    Article  ADS  Google Scholar 

  16. Fert A (2007) The origin, development and future of spintronics. In: Grandin K (ed) The nobel prizes 2007. Nobel Foundation, Stockholm

    Google Scholar 

  17. Baibich MN, Broto JM, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friedrich A, Chazelas J (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett 61:2472–2475

    Article  ADS  Google Scholar 

  18. Binasch G, Grünberg P, Saurenbach F, Zinn W (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39:4828–4830

    Article  ADS  Google Scholar 

  19. Dieny B (1994) Giant magnetoresistance in spin-valve multilayers. J Magn Magn Mater 136:335–359

    Article  ADS  Google Scholar 

  20. Barthélémy A, Fert A, Petroff F (1999) In: Buschow KHJ (ed) Handbook of magnetic materials, vol 12, Giant magnetoresistance in magnetic multilayers. Elsevier, Amsterdam

    Google Scholar 

  21. Bozorth RM (1950) Atomic moments of ferromagnetic alloys. Phys Rev 79:887

    Article  ADS  Google Scholar 

  22. George JM, Pereira LG, Barthélémy A, Petroff F, Steren L, Duvail JL, Fert A, Loloee R, Holody P, Schroeder PA (1994) Inverse spin-valve-type magnetoresistance in spin engineered multi-layered structures. Phys Rev Lett 72:408–411

    Article  ADS  Google Scholar 

  23. Buchmeier M, Schreiber R, Bürgler DE, Grünberg P (2003) Inverse giant magnetoresistance due to spin-dependent interface scattering in Fe/Cr/Au/Co. Europhys Lett 63:874–880

    Article  ADS  Google Scholar 

  24. Hsu SY, Barthélémy A, Holody P, Loloee R, Fert A (1997) Towards a unified picture of spin dependent transport in and perpendicular giant magnetoresistance and bulk alloys. Phys Rev Lett 78:2652–2655

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Grünberg or Daniel E. Bürgler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Grünberg, P., Bürgler, D.E. (2016). Metallic Multilayers: Discovery of Interlayer Exchange Coupling and GMR. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6892-5_6

Download citation

Publish with us

Policies and ethics