Skip to main content
Log in

Effects of the prey refuge distribution on a predator-prey system

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The existence of prey refuges in a predator-prey system is known to be strongly related to the ecosystem’s stability. In this study, we explored how the prey refuge distribution affects the predator-prey system. To do so, we constructed a spatial lattice model to simulate an integrative predator (wolf) - prey (rabbit) - plant (grass) relationship. When a wolf (rabbit) encountered a rabbit (grass), the wolf (rabbit) tended to move to the rabbit (grass) for foraging while the rabbit tended to escape from the wolf. These behaviors were mathematically described by the degrees of willingness for hunting (H) and escaping (E). Initially, n refuges for prey were heterogeneously distributed in the lattice space. The heterogeneity was characterized as variable A. Higher values of A equate to higher aggregation in the refuge. We investigated the mean population density for different values of H, E, and A. To simply characterize the refuge distribution effect, we built an H-E grid map containing the population density for each species. Then, we counted the number of grids, N, with a population density ≥ 0.25. Simulation results showed that an appropriate value of A positively affected prey survival while values of A were too high had a negative effect on prey survival. The results were explained by using the trade-off between the staying time of the prey in the refuge and the cluster size of the refuge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Holling, Annu. Rev. Entomol. 6, 163 (1961).

    Article  ADS  Google Scholar 

  2. M. Venzon, A. Janssen, A. Pallini and M. W. Sabelis, Anim. Behav. 60, 369 (2000).

    Article  Google Scholar 

  3. A. J. Lotka, J. Am. Chem. Soc. 42, 1595 (1920).

    Article  Google Scholar 

  4. V. Volterra, Lecons sur la Théorie de la Lutte pour la Vie. Paris: Ghautier-Villars VI 214, 31 (1931).

    Google Scholar 

  5. C. S. Holling, Canad. Entomol. 91, 385 (1959).

    Article  Google Scholar 

  6. C. S. Holling, Mem. Entomol. Soc. Can. 45, 1 (1965).

    Article  Google Scholar 

  7. J. Martin and P. Lopez, Behav. Ecol. 10, 487 (1999).

    Article  Google Scholar 

  8. J. J. Meyer and J. E. Byers, Ecol. Lett. 8, 160 (2005).

    Article  Google Scholar 

  9. A. Sih, Theor. Popul. Biol. 31, 1 (1987).

    Article  MathSciNet  Google Scholar 

  10. S. J. Holbrook ad R. J. Schmitt, Ecology 83, 2855 (2002).

    Article  Google Scholar 

  11. B. Mnaya, E. Wolanski and Y. Kiwango, Wetlands Ecol. Manage. 14, 359 (2006).

    Article  Google Scholar 

  12. M. Edmunds, Defence in Animals: A Survey of Antipredator Defences (Longman, New York, 1974).

    Google Scholar 

  13. A. J. Loveridge, J. E. Hunt, F. Murindagomo and D. W. Macdonald, J. Zool. 270, 523 (2006).

    Article  Google Scholar 

  14. M. E. Hochberg and R. D. Hold, Evol. Ecol. 9, 633 (1995).

    Article  Google Scholar 

  15. Z. H. Ma, W. L. Li, Y. Zhao, W. L. Wang, H. Zhang and Z. Z. Li, Math. Biosci. 218, 73 (2009).

    Article  MathSciNet  Google Scholar 

  16. X. N. Guan, W. M. Wang and Y. L. Cai, Nonlinear Anal. Real World Appl. 12, 2385 (2011).

    Article  MathSciNet  Google Scholar 

  17. J. N. McNair, Theor. Popul. Biol. 29, 38 (1986).

    Article  MathSciNet  Google Scholar 

  18. M. W. Sabelis and O. Diekmann, Theor. Popul. Biol. 34, 169 (1988).

    Article  MathSciNet  Google Scholar 

  19. S. P. Ellner et al., Nature 412, 538 (2001).

    Article  ADS  Google Scholar 

  20. S. H. Lee, Physica A 389, 259 (2010).

    Article  ADS  Google Scholar 

  21. W. G. Wilson, A. M. Deroos and E. Mcauley, Theor. Popul. Biol. 43, 91 (1993).

    Article  Google Scholar 

  22. A. Pekalski, Compu. Sci. Eng. 6, 62 (2004).

    Article  Google Scholar 

  23. Y. Tao, Non. Anal.: Real World Appl. 11, 2056 (2010).

    Article  Google Scholar 

  24. A. Ramanantoanina and C. Hui, A. Ouhinou, Ecol. Model. 222, 3524 (2011).

    Article  Google Scholar 

  25. U. Wilensky, NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computerbased Modeling, Northwestern University, Evanston, IL (1999).

    Google Scholar 

  26. A. K. Fuller and D. J. Harrison, J. Mammol. 91, 1269 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Hee Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SH., Kwon, O. & Song, HS. Effects of the prey refuge distribution on a predator-prey system. Journal of the Korean Physical Society 68, 821–829 (2016). https://doi.org/10.3938/jkps.68.821

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.821

Keywords

Navigation