Skip to main content
Log in

Predator-induced prey dispersal can cause hump-shaped density-area relationships in prey populations

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Predation can both reduce prey abundance directly (through density-dependent effects) and indirectly through prey trait-mediated effects. Over the years, many studies have focused on describing the density-area relationship (DAR). However, the mechanisms responsible for the DAR are not well understood. Loss and fragmentation of habitats, owing to human activities, creates landscape-level spatial heterogeneity wherein patches of varying size, isolation and quality are separated by a human-modified “matrix” of varying degrees of hostility and has been a primary driver of species extinctions and declining biodiversity. How matrix hostility in combination with trait-mediated effects influence DAR, minimum patch size, and species coexistence remains an open question. In this paper, we employ a theoretical spatially explicit predator–prey population model built upon the reaction-diffusion framework to explore effects of predator-induced emigration (trait-mediated emigration) and matrix hostility on DAR, minimum patch size, and species coexistence. Our results show that when trait-mediated response strength is sufficiently strong, ranges of patch size emerge where a nonlinear hump-shaped prey DAR is predicted and other ranges where coexistence is not possible. In a conservation perspective, DAR is crucial not only in deciding whether we should have one large habitat patch or several-small (SLOSS), but for understanding the minimum patch size that can support a viable population. Our study lends more credence to the possibility that predators can alter prey DAR through predator-induced prey dispersal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant Nos. DMS-1853359, DMS-1853372, DMS-1853352, DMS-2150945, DMS-2150946, & DMS-2150947.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, analysis, and writing/revising of the manuscript. If any of the sections are not relevant to your manuscript, please include the heading and write ‘Not applicable’ for that section.

Corresponding author

Correspondence to Jerome Goddard II.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cronin, J.T., Goddard II, J., Muthunayake, A. et al. Predator-induced prey dispersal can cause hump-shaped density-area relationships in prey populations. J. Math. Biol. 88, 20 (2024). https://doi.org/10.1007/s00285-023-02040-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-023-02040-1

Keywords

Mathematics Subject Classification

Navigation