Skip to main content
Log in

Bipolar strain sensor based on an ultra-thin film of single-walled carbon nanotubes

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A bipolar strain sensor based on an ultra-thin film of single-walled carbon nanotubes (SWNTs) has been fabricated. First, a random network of SWNTs was grown on a Si substrate with thermal oxide by using chemical vapor deposition and then transferred to a transparent poly(dimethyl)siloxane (PDMS) film. A mechanical load was applied by pressing the PDMS-SWNT film with a blunt micrometer tip, and its electrical conductance was found to decrease linearly with increasing pressure. Upward bending of the flexible PDMS-SWNT film was found to yield increases in conductance whereas downward bending of the film was found to result in decreases in the conductance. We modeled the SWNT network on the PDMS film with a two-dimensional percolation system, and found that the increases (decreases) in the conductance of the film upon bending could be explained in terms of stick-density changes in the 2-D percolation system. Finally, because PDMS swells with certain organic vapors, a PDMS-SWNT film can be used as a chemical sensor for volatile organic compounds. Unlike for three-dimensional composites of SWNTs and polymers, the bipolar response upon bending and simple fabrication process for the system introduced here mean that it is an attractive candidate for tactile and motion sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Cao and J. A. Rogers, Adv. Mater. 21, 29 (2009).

    Article  Google Scholar 

  2. S. Kumar, B. A. Cola, R. Jackson and S. Graham, J. Eletronic Packaging 133, 020906 (2011).

    Article  Google Scholar 

  3. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard and A. G. Rinzler, Science 305, 1273 (2004).

    Article  ADS  Google Scholar 

  4. Q. Cao, H. S. Kim, N. Pimparkar, J. P. Kulkarni, C. J. Wang, M. Shim, K. Roy, M. A. Alam and J. A. Rogers, Nature 454, 495 (2008).

    Article  ADS  Google Scholar 

  5. K. Cattanach, R. D. Kulkarni, M. Kozlov and S. K. Manohar, Nanotechnology 17, 4123 (2006).

    Article  ADS  Google Scholar 

  6. S. Liu and X. Guo, NPG Asia Materials 4, e23 (2012).

    Article  Google Scholar 

  7. D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson and C. Zhou, Nano. Lett. 6, 1880 (2006).

    Article  ADS  Google Scholar 

  8. P. Chen, Y. Fu, R. Aminirad, C. Wang, J. Zhang, K. Wang, K. Galatsis and C. Zhou, Nano. Lett. 11, 5301 (2011).

    Article  ADS  Google Scholar 

  9. J. Zhang, C. Wang and C. Zhou, ACS Nano 6, 7412 (2012).

    Article  MathSciNet  Google Scholar 

  10. M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. Hu and G. Grüner, Appl. Phys. Lett. 88, 233506 (2006).

    Article  ADS  Google Scholar 

  11. R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben and J. L. Blackburn, Adv. Mater. 21, 3210 (2009).

    Article  Google Scholar 

  12. D. J. Lipomi, M. Vosgueritchian, B. C. K. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox and Z. Bao, Nat. Nanotechnol. 6, 788 (2011).

    Article  ADS  Google Scholar 

  13. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. lzadi-Najafabadi, D. N. Futaba and K. Hata, Nat. Nanotechnol. 6, 296 (2011).

    Article  ADS  Google Scholar 

  14. Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu and P. M. Ajayan, Nano. Lett. 6, 413 (2006).

    Article  ADS  Google Scholar 

  15. D. J. Cohen, D. Mitra, K. Peterson and M. M. Maharbiz, Nano. Lett. 12, 1821 (2012).

    Article  ADS  Google Scholar 

  16. Y, Zhu and F. Xu, Adv. Mater. 24, 1073 (2012).

    Article  MathSciNet  Google Scholar 

  17. S. H. Bae, Y. Lee, B. K. Sharma, H. J. Lee, J. H. Kim and J. H. Ahn, Carbon 51, 236 (2013).

    Article  Google Scholar 

  18. H. Lee, J. K. Yoo, J. H. Park, J. H. Kim, K. Kang and Y. S. Jung, Adv. Energy materials 2, 976 (2012).

    Article  Google Scholar 

  19. C. Luo, X. Zuo, L. Wang, E. Wang, S. Song, J. Wang, J. Wang, C. Fan and Y. Cao, Nano. Lett. 8, 4454 (2008).

    Article  ADS  Google Scholar 

  20. S. Bal and S. S. Samal, Bull. Mater. Sci. 30, 379 (2007).

    Article  Google Scholar 

  21. Q. Liu, T. Fujigaya, H. M. Cheng and N. Nakashima, J. Am. Chem. Soc. 132, 16581 (2010).

    Article  Google Scholar 

  22. S. Kim, J. Yim, X. Wang, D. D. C. Bradley, S. Lee and J. C. deMello, Adv. Funct. Mater. 20, 2310 (2010).

    Article  Google Scholar 

  23. Y. Kim, N. Minami, W. Zhu, S. Kazaoui, R. Azumi and M. Matsumoto, Jpn. J. Appl. Phys. 42, 7629. (2009).

    Article  ADS  Google Scholar 

  24. J. Y. Park, S. J. Yoo, E. J. Lee, D. H. Lee, J. Y. Kim and S. H. Lee, BioChip J. 4, 230 (2010).

    Article  Google Scholar 

  25. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos and M. M. J. Treacy, Phys. Rev. B. 58, 14013 (1998).

    Article  ADS  Google Scholar 

  26. G. E. Pike and C. H. Seager, Phys. Rev. B. 10, 1421 (1974).

    Article  ADS  Google Scholar 

  27. L. Hu, D. S. Hecht and G. Grüner, Nano. Lett. 4, 2513 (2004).

    Article  ADS  Google Scholar 

  28. G. Gruner, Mater. Res. Soc. Symp. Proc. Vol. 905E, 0905-DD06–05 (2006).

    Google Scholar 

  29. T. Endo, Y. Yanagida and T. Hatsuzawa, Sens. Actuators B 125, 589 (2007).

    Article  Google Scholar 

  30. J. Wang, B. Feng and W. G. Wu, Nano/Micro Engineered and Molecular Systems (NEMS), 2011 IEEE International Conference (Feb. 20–23, 2011), p. 449.

  31. H. Xie, Q. Yang, X. Sun, J. Yang and Y. Huang, Sens. Actuators. B 113, 887 (2006).

    Article  Google Scholar 

  32. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokukara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer and T. Someya, Nature 499, 458 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-O. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, DW., Kim, B.S., Park, S. et al. Bipolar strain sensor based on an ultra-thin film of single-walled carbon nanotubes. Journal of the Korean Physical Society 64, 488–491 (2014). https://doi.org/10.3938/jkps.64.488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.488

Keywords

Navigation