Skip to main content
Log in

Highly Sensitive Flexible Strain Sensor Based on a Double-percolation Structured Elastic Fiber of Carbon Nanotube (CNT)/Styrene Butadiene Styrene (SBS) @ Thermoplastic Polyurethane (TPU) for Human Motion and Tactile Recognition

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Conductive polymer composites based strain sensors have been widely investigated in recent years. However, the integration of a wide strain detection range and high sensitivity is still challenging. In this work, a double-percolation structured fiber strain sensor based on a carbon nanotube (CNT)/styrene butadiene styrene (SBS) conductive phase and a thermoplastic polyurethane (TPU) insulating phase (CNT/SBS@TPU) was fabricated using a simple melt mixing and fused filament fabrication strategy. The effect of SBS: TPU ratios on the electrical and sensing properties of samples was investigated, at 1 wt% CNT loading. It was shown that the SBS: TPU ratios significantly affected the performance of sensors. The highest conductivity of 1.08 × 10–3 S/m was obtained for SBS/5-TPU/5 (SBS: TPU = 5: 5). Due to the squeezing and interruptive effects of the insulating phase, SBS/5-TPU/5 showed a high sensitivity of 2,645,866, wide detection range (0.2%-92% strain), high linearity (R2 = 0.95 at 0–10% strain) and excellent stability (2000 cycles). Additionally, the SBS/5-TPU/5 sensor could effectively monitor varying frequencies within 0.05–1 Hz and showed prospective applications in human motion monitoring and tactile recognition. This work provides a route for manufacturing high-performance fiber strain sensors used for wearable intelligent devices and human-computer interaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Cai, B., Yao, Z., Zhang, X., Li, C., Liu, X., Zhang, X., Wang, Z., Zhang, C.: Damping Model of Fiber Reinforced Composites and Factors Affecting Damping and Dynamic Response. Appl. Compos. Mater. 28, 1451–1476 (2021)

    Article  Google Scholar 

  2. Chen, G., Wang, H., Guo, R., Duan, M., Zhang, Y., Liu, J.: Superelastic EGaIn Composite Fibers Sustaining 500% Tensile Strain with Superior Electrical Conductivity for Wearable Electronics. ACS. Appl. Nano Mater. 12, 6112–6118 (2020)

    Article  CAS  Google Scholar 

  3. Chen, Q., Xiang, D., Wang, L., Tang, Y., Harkin-Jones, E., Zhao, C., Li, Y.: Facile fabrication and performance of robust polymer/carbon nanotube coated spandex fibers for strain sensing. Compos. A. Appl. Sci. Manuf. 112, 186–196 (2018)

    Article  CAS  Google Scholar 

  4. Gao, J., Li, B., Huang, X., Wang, L., Lin, L., Wang, H., Xue, H.: Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring. Chem. Eng. J. 373, 298–306 (2019)

    Article  CAS  Google Scholar 

  5. Zhang, L., Jiang, F., Wang, L., Feng, Y., Yu, D., Yang, T., Wu, M., Petru, M.: High Performance Flexible Strain Sensors Based On Silver Nanowires/thermoplastic Polyurethane Composites for Wearable Devices. Appl. Compos. Mater. 29, 1621–1636 (2022)

    Article  CAS  Google Scholar 

  6. Gupta, N., Rao, K.D.M., Srivastava, K., Gupta, R., Kumar, A., Marconnet, A., Fisher, T.S., Kulkarni, G.U.: Cosmetically Adaptable Transparent Strain Sensor for Sensitively Delineating Patterns in Small Movements of Vital Human Organs. ACS. Appl. Mater. Inter. 10, 44126–44133 (2018)

    Article  CAS  Google Scholar 

  7. Li, Q., Liu, H., Zhang, S., Zhang, D., Liu, X., He, Y., Mi, L., Zhang, J., Liu, C., Shen, C., Guo, Z.: Superhydrophobic Electrically Conductive Paper for Ultrasensitive Strain Sensor with Excellent Anticorrosion and Self-Cleaning Property. ACS. Appl. Mater. Inter. 11, 21904–21914 (2019)

    Article  CAS  Google Scholar 

  8. Li, Y., Zhou, B., Zheng, G., Liu, X., Li, T., Yan, C., Cheng, C., Dai, K., Liu, C., Shen, C., Guo, Z.: Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J. Mater. Chem. C. 6, 2258–2269 (2018)

    Article  CAS  Google Scholar 

  9. Liu, H., Dong, M., Huang, W., Gao, J., Dai, K., Guo, J., Zheng, G., Liu, C., Shen, C., Guo, Z.: Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J. Mater. Chem. C. 5, 73–83 (2017)

    Article  CAS  Google Scholar 

  10. Zhang, Z., Xiang, D., Wu, Y., Zhang, J., Li, Y., Wang, M., Li, Z., Zhao, C., Li, H., Wang, P., Li, Y.: Effect of Carbon Black on the Strain Sensing Property of 3D Printed Conductive Polymer Composites. Appl. Compos. Mater. 29, 1235–1248 (2022)

    Article  Google Scholar 

  11. Wang, M., Zhang, K., Dai, X.X., Li, Y., Guo, J., Liu, H., Li, G.H., Tan, Y.J., Zeng, J.B., Guo, Z.: Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure. Nanoscale. 9, 11017–11026 (2017)

    Article  CAS  Google Scholar 

  12. Xu, Y., Xie, X., Huang, H., Wang, Y., Yu, J., Hu, Z.: Encapsulated core–sheath carbon nanotube–graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor. J. Mater. Sci. 56, 2296–2310 (2020)

    Article  Google Scholar 

  13. Yu, S., Wang, X., Xiang, H., Zhu, L., Tebyetekerwa, M., Zhu, M.: Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure. Carbon. 140, 1–9 (2018)

    Article  Google Scholar 

  14. Zhao, S., Lou, D., Li, G., Zheng, Y., Zheng, G., Dai, K., Liu, C., Jiang, Y., Shen, C.: Bridging the segregated structure in conductive polypropylene composites: An effective strategy to balance the sensitivity and stability of strain sensing performances. Compos. Sci. Technol. 163, 18–25 (2018)

    Article  CAS  Google Scholar 

  15. Zheng, Y., Li, Y., Li, Z., Wang, Y., Dai, K., Zheng, G., Liu, C., Shen, C.: The effect of filler dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors. Compos. Sci. Technol. 139, 64–73 (2017)

    Article  CAS  Google Scholar 

  16. Shen, Z., Feng, J.: Mass-produced SEBS/graphite nanoplatelet composites with a segregated structure for highly stretchable and recyclable strain sensors. J. Mater. Chem. C. 7, 9423–9429 (2019)

    Article  CAS  Google Scholar 

  17. Zhang, M., Wang, C., Wang, Q., Jian, M., Zhang, Y.: Sheath-Core Graphite/Silk Fiber Made by Dry-Meyer-Rod-Coating for Wearable Strain Sensors. ACS. Appl. Mater. Inter. 8, 20894–20899 (2016)

    Article  CAS  Google Scholar 

  18. Guo, S.Z., Qiu, K., Meng, F., Park, S.H., McAlpine, M.C.: 3D Printed Stretchable Tactile Sensors. Adv. Mater. 29, 1701218 (2017)

    Article  Google Scholar 

  19. Xiang, D., Zhang, X., Harkin-Jones, E., Zhu, W., Zhou, Z., Shen, Y., Li, Y., Zhao, C., Wang, P.: Synergistic effects of hybrid conductive nanofillers on the performance of 3D printed highly elastic strain sensors. Compos. A. Appl. Sci. Manuf. 129, 105730 (2020)

    Article  CAS  Google Scholar 

  20. Lan, L., Jiang, C., Yao, Y., Ping, J., Ying, Y.: A stretchable and conductive fiber for multifunctional sensing and energy harvesting. Nano. Energy. 84, 105954 (2021)

    Article  CAS  Google Scholar 

  21. Sun, Z., Yang, S., Zhao, P., Zhang, J., Yang, Y., Ye, X., Zhao, X., Cui, N., Tong, Y., Liu, Y., Chen, X., Tang, Q.: Skin-like Ultrasensitive Strain Sensor for Full-Range Detection of Human Health Monitoring. ACS. Appl. Mater. Inter. 12, 13287–13295 (2020)

    Article  CAS  Google Scholar 

  22. Wu, R., Ma, L., Hou, C., Meng, Z., Guo, W., Yu, W., Yu, R., Hu, F., Liu, X.Y.: Silk Composite Electronic Textile Sensor for High Space Precision 2D Combo Temperature-Pressure Sensing. Small. 15, e1901558 (2019)

    Article  Google Scholar 

  23. Shi, G., Lowe, S.E., Teo, A.J.T., Dinh, T.K., Tan, S.H., Qin, J., Zhang, Y., Zhong, Y.L., Zhao, H.: A versatile PDMS submicrobead/graphene oxide nanocomposite ink for the direct ink writing of wearable micron-scale tactile sensors. Appl. Mater. Today. 16, 482–492 (2019)

    Article  Google Scholar 

  24. Wang, Y., Hao, J., Huang, Z., Zheng, G., Dai, K., Liu, C., Shen, C.: Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon. 126, 360–371 (2018)

    Article  CAS  Google Scholar 

  25. Yu, S., Wang, X., Xiang, H., Tebyetekerwa, M., Zhu, M.: 1-D polymer ternary composites: Understanding materials interaction, percolation behaviors and mechanism toward ultra-high stretchable and super-sensitive strain sensors. Sci. China. Mater. 62, 995–1004 (2019)

    Article  CAS  Google Scholar 

  26. Qi, K., Zhou, Y., Ou, K., Dai, Y., You, X., Wang, H., He, J., Qin, X., Wang, R.: Weavable and stretchable piezoresistive carbon nanotubes-embedded nanofiber sensing yarns for highly sensitive and multimodal wearable textile sensor. Carbon. 170, 464–476 (2020)

    Article  CAS  Google Scholar 

  27. Wang, L., Chen, Y., Lin, L., Wang, H., Huang, X., Xue, H., Gao, J.: Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem. Eng. J. 362, 89–98 (2019)

    Article  CAS  Google Scholar 

  28. Yang, Z., Zhai, Z., Song, Z., Wu, Y., Liang, J., Shan, Y., Zheng, J., Liang, H., Jiang, H.: Conductive and Elastic 3D Helical Fibers for Use in Washable and Wearable Electronics. Adv. Mater. 32, e1907495 (2020)

    Article  Google Scholar 

  29. Zhang, Y., Ren, H., Chen, H., Chen, Q., Jin, L., Peng, W., Xin, S., Bai, Y.: Cotton Fabrics Decorated with Conductive Graphene Nanosheet Inks for Flexible Wearable Heaters and Strain Sensors. ACS. Appl. Nano. Mater. 4, 9709–9720 (2021)

    Article  CAS  Google Scholar 

  30. Hu, Y., Huang, T., Zhang, H., Lin, H., Zhang, Y., Ke, L., Cao, W., Hu, K., Ding, Y., Wang, X., Rui, K., Zhu, J., Huang, W.: Ultrasensitive and Wearable Carbon Hybrid Fiber Devices as Robust Intelligent Sensors. ACS. Appl. Mater. Inter. 13, 23905–23914 (2021)

    Article  CAS  Google Scholar 

  31. He, Y., Wu, D., Zhou, M., Zheng, Y., Wang, T., Lu, C., Zhang, L., Liu, H., Liu, C.: Wearable Strain Sensors Based on a Porous Polydimethylsiloxane Hybrid with Carbon Nanotubes and Graphene. ACS. Appl. Mater. Inter. 13, 15572–15583 (2021)

    Article  CAS  Google Scholar 

  32. Li, X., Fan, Y.J., Li, H.Y., Cao, J.W., Xiao, Y.C., Wang, Y., Liang, F., Wang, H.L., Jiang, Y., Wang, Z.L., Zhu, G.: Ultracomfortable Hierarchical Nanonetwork for Highly Sensitive Pressure Sensor. ACS. Nano. 14, 9605–9612 (2020)

    Article  CAS  Google Scholar 

  33. Ma, J., Wang, P., Chen, H., Bao, S., Chen, W., Lu, H.: Highly Sensitive and Large-Range Strain Sensor with a Self-Compensated Two-Order Structure for Human Motion Detection. ACS. Appl. Mater. Inter. 11, 8527–8536 (2019)

    Article  CAS  Google Scholar 

  34. Ravindren, R., Mondal, S., Nath, K., Das, N.C.: Synergistic effect of double percolated co-supportive MWCNT-CB conductive network for high-performance EMI shielding application. Polym. Adv. Technol. 30, 1506–1517 (2019)

    Article  CAS  Google Scholar 

  35. Yue, X., Jia, Y., Wang, X., Zhou, K., Zhai, W., Zheng, G., Dai, K., Mi, L., Liu, C., Shen, C.: Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring. Compos. Sci. Technol. 189, 108038 (2020)

    Article  CAS  Google Scholar 

  36. Zhang, H., Liu, D., Lee, J.H., Chen, H., Kim, E., Shen, X., Zheng, Q., Yang, J., Kim, J.K.: Anisotropic, Wrinkled, and Crack-Bridging Structure for Ultrasensitive, Highly Selective Multidirectional Strain Sensors. Nanomicro. Lett. 13, 122 (2021)

    CAS  Google Scholar 

  37. Zhang, X., Xiang, D., Zhu, W., Zheng, Y., Harkin-Jones, E., Wang, P., Zhao, C., Li, H., Wang, B., Li, Y.: Flexible and high-performance piezoresistive strain sensors based on carbon nanoparticles@polyurethane sponges. Compos. Sci. Technol. 200, 108437 (2020)

    Article  CAS  Google Scholar 

  38. Chen, Q., Li, Y., Xiang, D., Zheng, Y., Zhu, W., Zhao, C., Li, H., Han, H., Shen, Y.: Enhanced Strain Sensing Performance of Polymer/Carbon Nanotube-Coated Spandex Fibers via Noncovalent Interactions. Macromol. Mater. Eng. 305, 1900525 (2019)

    Article  Google Scholar 

  39. Lin, M., Zheng, Z., Yang, L., Luo, M., Fu, L., Lin, B., Xu, C.: A High-Performance, Sensitive, Wearable Multifunctional Sensor Based on Rubber/CNT for Human Motion and Skin Temperature Detection. Adv. Mater. 34, e2107309 (2021)

    Article  Google Scholar 

  40. Xiang, D., Zhang, X., Li, Y., Harkin-Jones, E., Zheng, Y., Wang, L., Zhao, C., Wang, P.: Enhanced performance of 3D printed highly elastic strain sensors of carbon nanotube/thermoplastic polyurethane nanocomposites via non-covalent interactions. Compos. B. Eng. 176, 107250 (2019)

    Article  CAS  Google Scholar 

  41. Wang, Y., Jia, Y., Zhou, Y., Wang, Y., Zheng, G., Dai, K., Liu, C., Shen, C.: Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands. J. Mater. Chem. C. 6, 8160–8170 (2018)

    Article  CAS  Google Scholar 

  42. Zhang, R., Lv, A., Ying, C., Hu, Z., Hu, H., Chen, H., Liu, Q., Fu, X., Hu, S., Wong, C.P.: Facile one-step preparation of laminated PDMS based flexible strain sensors with high conductivity and sensitivity via filler sedimentation. Compos. Sci. Technol. 186, 107933 (2020)

    Article  CAS  Google Scholar 

  43. Christ, J.F., Aliheidari, N., Ameli, A., Pötschke, P.: 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater. Des. 131, 394–401 (2017)

    Article  CAS  Google Scholar 

  44. Gao, X., Zhang, S., Mai, F., Lin, L., Deng, Y., Deng, H., Fu, Q.: Preparation of high performance conductive polymer fibres from double percolated structure. J. Mater. Chem. 21, 6401–6408 (2011)

    Article  CAS  Google Scholar 

  45. Ji, M., Deng, H., Yan, D., Li, X., Duan, L., Fu, Q.: Selective localization of multi-walled carbon nanotubes in thermoplastic elastomer blends: An effective method for tunable resistivity–strain sensing behavior. Compos. Sci. Technol. 92, 16–26 (2014)

    Article  CAS  Google Scholar 

  46. Zhang, S., Deng, H., Zhang, Q., Fu, Q.: Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties. ACS. Appl. Mater. Inter. 6, 6835–6844 (2014)

    Article  CAS  Google Scholar 

  47. Chen, Y.-F., Li, J., Tan, Y.-J., Cai, J.-H., Tang, X.-H., Liu, J.-H., Wang, M.: Achieving highly electrical conductivity and piezoresistive sensitivity in polydimethylsiloxane/multi-walled carbon nanotube composites via the incorporation of silicon dioxide micro-particles. Compos. Sci. Technol. 177, 41–48 (2019)

    Article  CAS  Google Scholar 

  48. Xiang, D., Liu, L., Chen, X., Wu, Y., Wang, M., Zhang, J., Zhao, C., Li, H., Li, Z., Wang, P., Li, Y.: High-performance fiber strain sensor of carbon nanotube/thermoplastic polyurethane@styrene butadiene styrene with a double percolated structure. Front. Mater. Sci. 16, 220586 (2022)

    Article  Google Scholar 

  49. Al-Furjan, M.S.H., Habibi, M., Ni, J., Jung, D.W., Tounsi, A.: Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems. Eng. Comput. (2020)

  50. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S., Tounsi, A.: Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory. Eng. Comput. (2021)

  51. Huang, Y., Karami, B., Shahsavari, D., Tounsi, A.: Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Arch. Civ. Mech. Eng. 21, 139 (2021)

    Article  Google Scholar 

  52. Kong, F., Dong, F., Duan, M., Habibi, M., Safarpour, H., Tounsi, A.: On the vibrations of the Electrorheological sandwich disk with composite face sheets considering pre and post-yield regions. Thin. Wall. Struct. 179, 109631 (2022)

    Article  Google Scholar 

  53. Mahdi, M.A., Yousefi, S.R., Jasim, L.S., Salavati-Niasari, M.: Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: Photocatalytic and antibacterial activities. Int. J. Hydrogen. Energ. 47, 14319–14330 (2022)

    Article  CAS  Google Scholar 

  54. Yousefi, S.R., Alshamsi, H.A., Amiri, O., Salavati-Niasari, M.: Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021)

    Article  CAS  Google Scholar 

  55. Yousefi, S.R., Amiri, O., Salavati-Niasari, M.: Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrason. Sonochem. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  56. Yousefi, S.R., Sobhani, A., Alshamsi, H.A., Salavati-Niasari, M.: Green sonochemical synthesis of BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. RSC. Adv. 11, 11500–11512 (2021)

    Article  CAS  Google Scholar 

  57. Liu, L., Zhang, X., Xiang, D., Wu, Y., Sun, D., Shen, J., Wang, M., Zhao, C., Li, H., Li, Z., Wang, P., Li, Y.: Highly stretchable, sensitive and wide linear responsive fabric-based strain sensors with a self-segregated carbon nanotube (CNT)/Polydimethylsiloxane (PDMS) coating. Prog. Nat. Sci. 32, 34–42 (2022)

    Article  CAS  Google Scholar 

  58. Jiang, Y., Liu, Z., Matsuhisa, N., Qi, D., Leow, W.R., Yang, H., Yu, J., Chen, G., Liu, Y., Wan, C., Liu, Z., Chen, X.: Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors. Adv. Mater. 30, e1706589 (2018)

    Article  Google Scholar 

  59. Boland, C.S., Khan, U., Backes, C., O’Neill, A., McCauley, J., Duane, S., Shanker, R., Liu, Y., Jurewicz, I., Dalton, A.B., Coleman, J.N.: Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on GrapheneRubber Composites. ACS. Nano. 8, 8819–8830 (2014)

    Article  CAS  Google Scholar 

  60. Cravanzola, S., Haznedar, G., Scarano, D., Zecchina, A., Cesano, F.: Carbon-based piezoresistive polymer composites: Structure and electrical properties. Carbon. 62, 270–277 (2013)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (12102374, 52173301), the Sichuan Science and Technology Program (2021YFH0031, 2022JDGD0015 and 2022YFH0019), the International Cooperation Project of Chengdu (2019-GH02-00054-HZ), Special Funded Postdoctoral Program of Sichuan Province (021609912), Open Experimental Program of SWPU (2021KSP05008), and Innovative Research Team of SWPU (2017CXTD01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Xiang, Yuanpeng Wu or Yuntao Li.

Ethics declarations

Competing interest

We declare that we have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dong Xiang and Libing Liu contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5305 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, D., Liu, L., Xu, F. et al. Highly Sensitive Flexible Strain Sensor Based on a Double-percolation Structured Elastic Fiber of Carbon Nanotube (CNT)/Styrene Butadiene Styrene (SBS) @ Thermoplastic Polyurethane (TPU) for Human Motion and Tactile Recognition. Appl Compos Mater 30, 307–322 (2023). https://doi.org/10.1007/s10443-022-10084-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10084-7

Keywords

Navigation