Skip to main content
Log in

Measurement of hydrogen permeation through nickel in the elevated temperature range of 450 – 850 °C

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Hydrogen permeation through nickel has been studied for decades owing to its importance from both scientific and industrial aspects. Considering the applications for nuclear hydrogen production as well as nuclear fusion, we carried out a series of hydrogen permeation experiments in the wide temperature range of 450–850 °C by using a nickel membrane. The permeability, diffusivity, and solubility of hydrogen for nickel were determined. Our results were compared with the ones previously reported by others; because their works were measured at low temperatures compared with this work, their values were extrapolated for the purpose of comparisons. Results and discussions for hydrogen permeation studies are presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Kharecha and J. E. Hansen, Environ. Sci. Technol. 47, 4889 (2013).

    Article  ADS  Google Scholar 

  2. K. Vaillancourt, M. Labriet, R. Loulou and J. P. Waaub, Energy Policy 36, 2296 (2008).

    Article  Google Scholar 

  3. R. H. Socolow and S. W. Pacala, Sci. Am. 295, 50 (2006).

    Article  Google Scholar 

  4. W. Zhang, B. Yu and J. Xu, Int. J. Hydrogen Energy 37, 12060 (2012).

    Article  Google Scholar 

  5. B. Yildiz and M. S. Kazimi, Int. J. Hydrogen Energy 31, 77 (2006).

    Article  Google Scholar 

  6. J. E. O’Brien, M. G. McKeller, E. A. Harvego and C. M. Stoots, Int. J. Hydrogen Energy 35, 4808 (2010).

    Article  Google Scholar 

  7. Y. Wu and FDS Team, J. Nucl. Mater. 386–388, 122 (2009).

    Article  Google Scholar 

  8. I. R. Kirillov and RF DEMO Team, Fusion Eng. Des. 49–50, 457 (2000).

    Article  Google Scholar 

  9. S. A. Steward, Lawrence Livermore National Laboratory Report, UCRL-53441, 1983.

    Google Scholar 

  10. S. N. Paglieri and J. D. Way, Sep. Purif. Meth. 31, 1 (2002).

    Article  Google Scholar 

  11. T. Y. Zhang and I. Wat, J. Appl. Phys. 93, 6016 (2003).

    Article  ADS  Google Scholar 

  12. D. E. Jiang and E. A. Carter, Phys. Rev. B 70, 064102 (2004).

    Article  ADS  Google Scholar 

  13. A. Borgschulte and R. Gremaud, Phys. Rev. B 78, 094106 (2008).

    Article  ADS  Google Scholar 

  14. M. Wilde and K. Fukutani, Phys. Rev. B 78, 115411 (2008).

    Article  ADS  Google Scholar 

  15. F. R. Turaev, S. B. Park, T. Bahn, S. J. Kim, J. H. Ahn and T. H. Hong, J. Korean Phys. Soc. 54, 1091 (2009).

    Article  ADS  Google Scholar 

  16. P. L. Andrew and A. A. Haasz, J. Appl. Phys. 72, 2749 (1992).

    Article  ADS  Google Scholar 

  17. K. Kizu and T. Tanabe, J. Nucl. Mater. 266-269, 561 (1999).

    Article  ADS  Google Scholar 

  18. B. D. Morreale, M. V. Ciocco, R. M. Enick, B. I. Morsi, B. H. Howard, A. V. Cugini and K. S. Rothenberger, J. Membr. Sci. 212, 87 (2003).

    Article  Google Scholar 

  19. K. Zhang, X. Wei, Z. Rui, Y. Li and Y. S. Lin, AIChE J. 55, 630 (2009).

    Article  Google Scholar 

  20. S. Hara, M. Ishitsuka, H. Suda, M. Mukaida and K. Haraya, J. Phys. Chem. B 113, 9795 (2009).

    Article  Google Scholar 

  21. W. S. Chen, P. C. Hsu and B. J. Lin, Int. J. Hydrogen Energy 35, 5410 (2010).

    Article  Google Scholar 

  22. Y. Ishikawa, T. Yoshimura and M. Arai, Vac. 47, 357 (1996).

    Article  Google Scholar 

  23. T. Shiraishi, M. Nishikawa, T. Yamaguchi and K. Kenmotsu, J. Nucl. Mater. 273, 60 (1999).

    Article  ADS  Google Scholar 

  24. G. Benamati, E. Serra and C. H. Wu, J. Nucl. Mater. 283-287, 1033 (2000).

    Article  ADS  Google Scholar 

  25. S. K. Lee, H. S. Kim, B. H. Chung and S. J. Noh, Curr. Appl. Phys. 11, S99 (2011).

    Article  Google Scholar 

  26. S. K. Lee, S. J. Noh and S. R. In, J. Korean Phys. Soc. 61, 158 (2012).

    Article  ADS  Google Scholar 

  27. R. Cortes, A. Valiente, J. Ruiz, L. Caballero and J. Toribio, Mater. Sci. 33, 491 (1997).

    Article  Google Scholar 

  28. F. W. H. Dean, Mater. Sci. Technol. 21, 347 (2005).

    Article  Google Scholar 

  29. H. A. Schmutz, P. Sabharwall and C. Stoots, Idaho National Laboratory Report, INL/EXT-12-26758, 2012.

    Google Scholar 

  30. D. R. Hanchar and M. S. Kazimi, J. Fusion Energy 3, 47 (1983).

    Article  ADS  Google Scholar 

  31. A. Aiello, C. Fazio, I. Ricapito and G. Benamati, Proceedings of the International Tritium Workshop on Tritium-Material Interactions (Toyama, Japan, Novem ber 18–19, 2001).

    Google Scholar 

  32. H. A. Daynes, Proc. R. Soc. Lond. A 97, 286 (1920).

    Article  ADS  Google Scholar 

  33. R. M. Barrer, Trans. Faraday. Soc. 35, 628 (1939).

    Article  Google Scholar 

  34. J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford University Press, London, 1975), Chap. 4.

    Google Scholar 

  35. E. Serra, A. Peru and G. Benamati, J. Nucl. Mater. 245, 108 (1997).

    Article  ADS  Google Scholar 

  36. K. D. Ziegel, H. K. Frensdorff and D. E. Blair, J. Polym. Sci. Part A-2 7, 809 (1969).

    Article  Google Scholar 

  37. J. K. Gorman and W. R. Nardella, Vacuum 12, 19 (1962).

    Article  Google Scholar 

  38. W. Eichenauer, W. Loser and H. Witte, Z. Metallkd. 56, 287 (1965).

    Google Scholar 

  39. Y. Ebisuzaki, W. J. Kass and M. O’Keeffe, J. Chem. Phys. 46, 1378 (1967).

    Article  ADS  Google Scholar 

  40. L. Katz, M. Guinan and R. J. Borg, Phys. Rev. B 4, 330 (1971).

    Article  ADS  Google Scholar 

  41. W. M. Robertson, Z. Metallkd. 64, 436 (1973).

    Google Scholar 

  42. M. R. Louthan, Jr., J. A. Donovan and G. R. Caskey, Jr., Acta Met. 23, 745 (1975).

    Article  Google Scholar 

  43. T. Tanabe, Y. Yamanishi, K. Sawada and S. Imoto, J. Nucl. Mater. 122–123, 1568 (1984).

    Article  Google Scholar 

  44. Y. Hayashi and A. Tahara, Z. Phys. Chem. 145, 261 (1985).

    Article  Google Scholar 

  45. T. Shiraishi, M. Nishikawa and T. Fukumatsu, J. Nucl. Mater. 254, 205 (1998).

    Article  ADS  Google Scholar 

  46. E. E. Bloom and D. L. Smith, J. Mater. Energy Syst. 7, 181 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Noh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.K., Ohn, Y.G. & Noh, S.J. Measurement of hydrogen permeation through nickel in the elevated temperature range of 450 – 850 °C. Journal of the Korean Physical Society 63, 1955–1961 (2013). https://doi.org/10.3938/jkps.63.1955

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.1955

Keywords

Navigation