Skip to main content

Membrane Hydrogen Mixture Separation: Modelling and Analysis

  • Chapter
  • First Online:
Computational Mathematics and Applications

Abstract

Innovative binary nickel membranes for hydrogen separation were developed. They proved their competitive ability in comparison with traditional palladium and palladium–nickel membranes. Moreover, it’s necessary to take into account the simplicity and low cost of their technology, low material consumption against the traditional one. Developed nickel membranes were applied in the experimental facility for membrane gas separation designed at A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus. The theoretical base of hydrogen mixture membrane separation and algorithms of simulation were developed. “Membrane Gas Separation 1.0” (MGS v. 1.00) software package was created to study various design solutions of the experimental facility to compare membrane elements of various types (tube and capillary), to study the effect of mass transfer processes on impurity gas concentration in the membrane module for different regimes. This software package gives a possibility to choose the optimal design solution with maximum process efficiency for specific engineering task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birol, F.: The future of hydrogen. OECD (2019)

    Google Scholar 

  2. Sherif, S.A., Goswami, D.Y., Stefanakos, E.K., Steinfeld, A.: Handbook of Hydrogen Energy. CRC Press (2014). https://doi.org/10.1201/b17226

  3. Bernardo, G., Araújo, T., da Silva Lopes, T., Sousa, J., Mendes, A.: Recent advances in membrane technologies for hydrogen purification. Int. J. Hydrogen Energy 45, 7313–7338 (2020). https://doi.org/10.1016/j.ijhydene.2019.06.162

    Article  Google Scholar 

  4. Uragami, T.: Science and Technology of Separation Membranes. Wiley, Chichester, UK (2017). https://doi.org/10.1002/9781118932551

  5. Ismail, F.A., Hilal, N., Wright, C.J. (eds): Memrane Fabrication. CRC Press, Taylor & Francis Group (2015)

    Google Scholar 

  6. Li, P., Wang, Z., Qiao, Z., Liu, Y., Cao, X., Li, W., Wang, J., Wang, S.: Recent developments in membranes for efficient hydrogen purification. J. Membr. Sci. 495, 130–168 (2015). https://doi.org/10.1016/j.memsci.2015.08.010

    Article  Google Scholar 

  7. Baker, R.W.: Membrane Technology and Applications. Wiley (2004)

    Google Scholar 

  8. Doukelis, A., Panopoulos, K., Koumanakos, A., Kakaras, E. (eds.): Palladium Membrane Technology for Hydrogen Production, Carbon Capture and Other Applications. Elsevier (2015)

    Google Scholar 

  9. Al-Mufachi, N.A., Rees, N.V., Steinberger-Wilkens, R.: Hydrogen selective membranes: a review of palladium-based dense metal membranes. Renew. Sustain. Energy Rev. 47, 540–551 (2015). https://doi.org/10.1016/j.rser.2015.03.026

    Article  Google Scholar 

  10. Alhussan, K., Delendik, K., Ignatenko, D., Kolyago, N., Penyazkov, O., Voitik, O.: Basic Principles of Membrane Gas Separation. HMTI NANB, Minsk (2015)

    Google Scholar 

  11. Gapontsev, A.V., Kondrat’ev, V.V.: Hydrogen diffusion in disordered metals and alloys. Phys. Uspekhi. 46, 1077–1098 (2003). https://doi.org/10.3367/UFNr.0173.200310c.1107

    Article  Google Scholar 

  12. Vorotyntsev, V.M., Drozdov, P.N., Vorotyntsev, I.V., Belyaev, E.S.: Deep gas cleaning of highly permeating impurities using a membrane module with a feed tank. Pet. Chem. 51, 595–600 (2011). https://doi.org/10.1134/S0965544111080111

    Article  Google Scholar 

  13. Vorotyntsev, V.M., Drozdov, P.N., Vorotyntsev, I.V., Balabanov, S.S.: Membrane module with a feed tank for fine purification of gases. Theor. Found. Chem. Eng. 42, 398–403 (2008). https://doi.org/10.1134/S0040579508040076

    Article  Google Scholar 

  14. Caravella, A., Scura, F., Barbieri, G., Drioli, E.: Sieverts law empirical exponent for PD-based membranes: critical analysis in pure H2 permeation. J. Phys. Chem. B. 114, 6033–6047 (2010). https://doi.org/10.1021/jp1006582

    Article  Google Scholar 

  15. Luis, P.: Fundamental Modeling of Membrane Systems. Elsevier Inc. (2012)

    Google Scholar 

  16. Deveau, N.D., Ma, Y.H., Datta, R.: Beyond Sieverts’ law: a comprehensive microkinetic model of hydrogen permeation in dense metal membranes. J. Membr. Sci. 437, 298–311 (2013). https://doi.org/10.1016/j.memsci.2013.02.047

    Article  Google Scholar 

  17. Baikov, V.I., Primak, N.V.: Membrane selective separation of binary gas mixtures. J. Eng. Phys. Thermophys. 80, 382–387 (2007). https://doi.org/10.1007/s10891-007-0050-8

    Article  Google Scholar 

  18. Mulder, M.: Basic Principles of Membrane Technology (1996)

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by King Abdulaziz City for Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Delendik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alhussan, K., Delendik, K., Kolyago, N., Penyazkov, O., Voitik, O. (2020). Membrane Hydrogen Mixture Separation: Modelling and Analysis. In: Zeidan, D., Padhi, S., Burqan, A., Ueberholz, P. (eds) Computational Mathematics and Applications. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-15-8498-5_8

Download citation

Publish with us

Policies and ethics