Skip to main content
Log in

Finite-element modeling of stress-assisted hydrogen diffusion in 316L stainless steel

  • Published:
Materials Science Aims and scope

Abstract

We present a numerical investigation of stress-assisted hydrogen diffusion in AISI 316L stainless steel by means of a diffusion software assembled to a finite-element elastoplastic code. Notched cylindrical bars with different radii of the notches are simulated and the effect of the stress field on the process of hydrogen transport is analyzed. The numerical results show that, regardless of the stress field, hydrogen penetration depths always remain smaller than 0.1 mm for simulated durations of the tests of about two months. If the effect of hydrogen damage is represented by a crack originating from the root of the notch, then we observe a decrease in the load-bearing capacity of the bars, although the contours of hydrogen concentration are remarkably similar to those found in bars without cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NET Status Report. Commission of the European Communities, Dec. 1985, Directorate General XII-Fusion Programme, Brussels (1985).

  2. Y. Rosenthal, M. Mark-Markowitch, A. Stern and D. Eliezer, “Tensile flow and fracture behaviour of austenitic steels after thermal aging in a hydrogen atmosphere,”Mater. Sci. Eng.,67, 91–107 (1984).

    Article  CAS  Google Scholar 

  3. E. Minkovitz and D. Eliezer, “Hydrogen-assisted cracking of sensitized 316L stainless steel,”J. Mater. Sci.,16, 2057–2511 (1981).

    Google Scholar 

  4. P. Rozenak and D. Eliezer, “Effects of metallurgical variables on hydrogen embrittlement in AISI-type 316, 321, and 324 stainless steel”,Mater. Sci. Eng.,61, 31–41 (1983).

    Article  CAS  Google Scholar 

  5. P. Cotterill, “The hydrogen embrittlement of metals,” in:Progress in Materials Science, Pergamon Press, London (1961).

    Google Scholar 

  6. P. Bastien and P. Azou, “Influence de l'ecrouissage sur le frottement interieur du fer et de l'acier, chargés ou non en hydrogène,”Comptes Rendues Acad. Sci. Paris, 1845–1848 (1951).

  7. G. M. Pressouyre and I. M. Bernstein, “A quantitative analysis of hydrogen trapping,”Met. Trans.,9A, 1571–1580 (1978).

    CAS  Google Scholar 

  8. M. R. Louthan Jr., and R. G. Derrick, “Hydrogen transport in austenitic stainless steel,”Corros. Sci.,15, 561–577 (1975).

    Google Scholar 

  9. P. Rozenak, I. M. Robertson, and H. K. Birnbaum, “HVEM studies of the effects of hydrogen on the deformation and fracture of AISI type 316 austenitic stainless steel,”Acta Met,38, 2031–2040 (1990).

    Article  CAS  Google Scholar 

  10. A. Valiente, J. Toribio, R. Cortés and L. Caballero, “Tensile fracture of stainless steel notched bars under hydrogen charging,”J. Eng. Mater. Technol.,118, 186–191 (1996).

    CAS  Google Scholar 

  11. D. Hardie and D. Dong, “Effect of hydrogen on ductility of stable austenitic stainless steel,”Brit. Corros. J.,29, 156–160 (1994).

    CAS  Google Scholar 

  12. H. P. Van Leeuwen, “The kinetics of hydrogen embrittlement: a quantitative diffusion model,”Eng. Fract. Mech.,6, 141–161 (1974).

    Article  Google Scholar 

Download references

Authors

Additional information

Departamento de Ingenieria, Universidad Carlos III de Madrid; Escuela Politécnica Superior; Departamento de Ciencia de Materiales Escuela de Ingenieros de Caminos, Universidad Politécnica de Madrid; Departamento de Ciencia de Materiales, Universidad de la Coruña, Spain. Published in Fizyko-Khimichna Mekhanika Materialiv, Vol. 33, No. 4, pp. 87–96, July–August, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortés, R., Valiente, A., Ruiz, J. et al. Finite-element modeling of stress-assisted hydrogen diffusion in 316L stainless steel. Mater Sci 33, 491–503 (1997). https://doi.org/10.1007/BF02537546

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537546

Keywords

Navigation