Skip to main content
Log in

Characteristic analysis of temperature-dependent photocurrent and photoluminescence spectra in as-implanted p-ZnO crystals

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The temperature-dependent photoresponse properties of As-doped p-ZnO crystals prepared by using the As-implantation method have been investigated by using photocurrent (PC) and photoluminescence (PL) spectroscopy. Two peaks, A and C, associated with band-to-band transitions were observed in the PC spectra. From the PL spectra, the neutral acceptor bound exciton emission, (A0, X), due to As-related acceptors was extracted. The temperature dependences of these peaks were well described by E g (T) = E g (0) — (3.10 × 10−4)T2/(143 + T). Also, the values of E g (T) were estimated to be 3.412, 3.418, and 3.468 eV at the valence-band states of Γ9(A), Γ7(B), and Γ7(C), respectively. Thus, the parameter of the crystal-field splitting was directly extracted by means of PC spectroscopy, and its value was 0.0503 eV at 13 K. However, the behavior of the PC was different from that generally observed in other semiconductors. The PC intensities progressively decreased with falling temperatures in regions below 150 K. From plots of log J PC vs. 1/T, where J PC is the PC current-density, a dominant level was observed at mid-range temperatures. By comparing the PC and the PL results, we confirmed an activation energy of 21.5 meV, corresponding to a partial dissociation energy of the (A0, X) emission. Consequently, trapping centers, which are imperfections related to As ions in As-implanted p-ZnO crystals, are thought to limit the PC intensity with decreasing temperatures below 150 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Jiao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. Yao, J. Y. Zhang, B. H. Li, D. X. Zhao, X. W. Fan and Z. K. Tang, Appl. Phys. Lett. 88, 031911 (2006).

    Article  ADS  Google Scholar 

  2. H. Ohta, M. Kamiya, T. Kamiya, M. Hirano and H. Hosono, Thin Solid Films 445, 317 (2003).

    Article  ADS  Google Scholar 

  3. Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien and Z. L. Wang, ACS Nano 4, 6285 (2010).

    Article  Google Scholar 

  4. Y. R. Ryu, T. S. Lee and H. W. White, Appl. Phys. Lett. 83, 87 (2003).

    Article  ADS  Google Scholar 

  5. F. K. Shan, B. C. Shin, S. C. Kim and Y. S. Yu, J. Eur. Ceram. Soc. 24, 1861 (2004).

    Article  Google Scholar 

  6. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong and H. W. Whit, J. Cryst. Growth 216, 330 (2000).

    Article  ADS  Google Scholar 

  7. W. Lee, D.-K. Hwang, M.-C. Jeong, M. Lee, M.-S. Oh, W.-K. Choi and J.-M. Myoung, Appl. Surf. Sci. 221, 32 (2004).

    Article  ADS  Google Scholar 

  8. T. S. Jeong, M. S. Han, C. J. Youn and Y. S. Park, J. Appl. Phys. 96, 175 (2004).

    Article  ADS  Google Scholar 

  9. W. Zhao, L. Zhao, Z. Shi, X. Xia, X. Li, X. Dong, Y. Chang, B. Zhang and G. Du, Appl. Surf. Sci. 257, 4685 (2011).

    Article  ADS  Google Scholar 

  10. D. C. Look, G. M. Renlund, R. H. Burgener II and J. R. Sizelove, Appl. Phys. Lett. 85, 5269 (2004).

    Article  ADS  Google Scholar 

  11. L. Wang and N. C. Giles, J. Appl. Phys. 94, 973 (2003).

    Article  ADS  Google Scholar 

  12. J. C. Fan, Z. Xie, Q. Wan and Y. G. Wang, J. Cryst. Growth 307, 66 (2007).

    Article  ADS  Google Scholar 

  13. Y. S. Park, C. W. Litton, T. C. Collins and D. C. Reynolds, Phys. Rev. 143, 512 (1966).

    Article  ADS  Google Scholar 

  14. MTI Corporation, 2700 Rydin Road, Unit D, Richmond, CA 94804, USA.

  15. T. S. Jeong, M. S. Han, J. H. Kim, C. J. Youn, Y. R. Ryu and H. W. White, J. Cryst. Growth 275, 541 (2005).

    Article  ADS  Google Scholar 

  16. Y. J. Shin, S. K. Kim, B. H. Park, T. S. Jeong, H. K. Shin, T. S. Kim and P. Y. Yu, Phys. Rev. B 44, 5522 (1991).

    Article  ADS  Google Scholar 

  17. R. H. Bube, Photoconductivity of Solids (Wiley, New York, 1969).

    Google Scholar 

  18. S. H. You, K. J. Hong, T. S. Jeong, C. J. Youn, J. S. Park, D. C. Shin and J. D. Moon, J. Cryst. Growth 256, 116 (2003).

    Article  ADS  Google Scholar 

  19. C. C. Klick, Phys. Rev. 89, 274 (1953).

    Article  ADS  Google Scholar 

  20. R. A. Smitt, Semiconductor, 2nd ed. (Cambridge University Press, Cambridge, 1978).

    Google Scholar 

  21. B. Ray, II-VI compounds (Pergamon, Oxford, 1969).

    Google Scholar 

  22. D. G. Thomas, J. Phys. Chem. Solids 15, 86 (1960).

    Article  ADS  Google Scholar 

  23. B. K. Meyer et al., phys. stat. sol. (b) 241, 231 (2004).

    Article  ADS  Google Scholar 

  24. J. C. Simmons and G. W. Taylor, J. Phys. C 7, 3051 (1974).

    Article  ADS  Google Scholar 

  25. T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo and H. Koinuma, J. Appl. Phys. 93, 5929 (2003).

    Article  ADS  Google Scholar 

  26. Y. P. Varshni, Physica 34, 149 (1967).

    Article  ADS  Google Scholar 

  27. C. J. Youn, T. S. Jeong, M. S. Han and J. H. Kim, J. Cryst. Growth 261, 526 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Youn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, T.S., Yu, J.H., Yang, H.J. et al. Characteristic analysis of temperature-dependent photocurrent and photoluminescence spectra in as-implanted p-ZnO crystals. Journal of the Korean Physical Society 63, 1777–1783 (2013). https://doi.org/10.3938/jkps.63.1777

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.1777

Keywords

Navigation