Skip to main content
Log in

Temperature and Injection Dependence of Photoluminescence Decay in Midwave Infrared HgCdTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Photoluminescence decay (PLD) measurements have been performed on mid-wave infrared (MWIR) Hg-vacancy p-doped HgCdTe samples at temperatures ranging from 85 K to 330 K. The doping level is \(p_{0} = 6 \times 10^{15} \;{\hbox{cm}}^{ - 3}\) at 80 K and the cut-off wavelength is \(\lambda_{\rm{c}} = 4.2\;\upmu{\hbox{m}}\) at 300 K. The PLD signal has been fitted with a photo-injection level dependent model in order to estimate the contributions from the different recombination mechanisms to the total minority carrier lifetime. Shockley–Read–Hall centers lying in the bandgap at 25 meV from the conduction or the valence band has been found to limit the minority carrier lifetime from 85 to at least 200 K. The value of the Auger 1 lifetime coefficient is extracted from the first instants of signal decay for each temperature and reaches \(G_{\rm{eei}} n_{i}^{ - 3} = 5 \times 10^{ - 26} \;{\hbox{cm}}^{6} \;{\hbox{s}}^{ - 1}\) at 85 K. The temperature evolution of the different contributions to the lifetime are in accordance with dark current density measurements in HgCdTe photodiodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.D. Jenkins, C.P. Morath, and V.M. Cowan, in Proc. SPIE Vol. 9226 (2014), p. 92260S–92260S–11.

  2. J. Calas, J. Allegre, and C. Fau, Phys. Status Solidi B 107, 275 (1981).

    Article  Google Scholar 

  3. L. Höglund, D.Z. Ting, A. Soibel, A. Fisher, A. Khoshakhlagh, C.J. Hill, L. Baker, S. Keo, J. Mumolo, and S.D. Gunapala, Infrared Phys. Technol. 70, 62 (2015).

    Article  Google Scholar 

  4. B.V. Olson, E.A. Kadlec, J.K. Kim, J.F. Klem, S.D. Hawkins, E. A. Shaner, and M. E. Flatté, Phys. Rev. Appl. 3, 044010 (2015).

  5. G. Soehnel, Opt. Express 23, 1256 (2015).

    Article  Google Scholar 

  6. S. Krishnamurthy and T.N. Casselman, J. Electron. Mater. 29, 828 (2000).

    Article  Google Scholar 

  7. F. Bertazzi, M. Goano, and E. Bellotti, J. Electron. Mater. 40, 1663 (2011).

    Article  Google Scholar 

  8. G.L. Hansen, J.L. Schmit, and T.N. Casselman, J. Appl. Phys. 53, 7099 (1982).

    Article  Google Scholar 

  9. P. Blood and J.W. Orton, Rep. Prog. Phys. 41, 157 (1978).

    Article  Google Scholar 

  10. F. Gemain, I.C. Robin, S. Brochen, M. De Vita, O. Gravrand, and A. Lusson, J. Electron. Mater. 41, 2867 (2012).

    Article  Google Scholar 

  11. P. Capper, Properties of Narrow Gap Cadmium-Based Compounds (INSPEC, the Institution of Electrical Engineers, London, 1994).

  12. A.R. Beattie and P.T. Landsberg, Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 249, 16 (1959).

    Article  Google Scholar 

  13. J.S. Blakemore, Semiconductor Statistics (Oxford: Pergamon Press, 1962).

    Google Scholar 

  14. R.N. Hall, Proc. IEE Part B Electron. Commun. Eng. 106, 923 (1959).

    Article  Google Scholar 

  15. S.E. Schacham and E. Finkman, J. Appl. Phys. 57, 2001 (1985).

    Article  Google Scholar 

  16. W. Shockley and W.T. Read, Phys. Rev. 87, 835 (1952).

    Article  Google Scholar 

  17. A. Rogalski, Infrared Detectors, 2nd ed. (Boca Raton: Taylor & Francis, 2011).

    Google Scholar 

  18. T.N. Casselman and P.E. Petersen, Solid State Commun. 33, 615 (1980).

    Article  Google Scholar 

  19. G.L. Hansen and J.L. Schmit, J. Appl. Phys. 54, 1639 (1983).

    Article  Google Scholar 

  20. M.E. Flatté, C.H. Grein, T.C. Hasenberg, S.A. Anson, D.-J. Jang, J.T. Olesberg, and T.F. Boggess, Phys. Rev. B 59, 5745 (1999).

    Article  Google Scholar 

  21. J. Hader, J.V. Moloney, B. Pasenow, S.W. Koch, M. Sabathil, N. Linder, and S. Lutgen, Appl. Phys. Lett. 92, 261103 (2008).

    Article  Google Scholar 

  22. K. Jóźwikowski, M. Kopytko, and A. Rogalski, J. Appl. Phys. 112, 33718 (2012).

    Article  Google Scholar 

  23. R. Fastow, D. Goren, and Y. Nemirovsky, J. Appl. Phys. 68, 3405 (1990).

    Article  Google Scholar 

  24. C.H. Swartz, R.P. Tompkins, N.C. Giles, T.H. Myers, D.D. Edwall, J. Ellsworth, E. Piquette, J. Arias, M. Berding, and S. Krishnamurthy, et al., J. Electron. Mater. 33, 728 (2004).

    Article  Google Scholar 

  25. G. Perrais, J. Rothman, G. Destefanis, and J.-P. Chamonal, J. Electron. Mater. 37, 1261 (2008).

    Article  Google Scholar 

  26. J. Rothman, K. Foubert, G. Lasfargues, and C. Largeron, J. Electron. Mater. 43, 2947 (2014).

    Article  Google Scholar 

  27. P. Capper, Mercury Cadmium Telluride: Growth, Properties, and Applications (Hoboken, NJ: Wiley, 2011).

    Google Scholar 

  28. R.L. Aggarwal, in Semiconductors and Semimetals, vol. 9, ed. by R.K. Willardson, A.C. Beer (New York, NY: Academic press, 1972).

  29. M.H. Weiler, in Semiconductors and Semimetals, vol. 16, ed. by R.K. Willardson, A.C. Beer (New York: Academic, 1981).

  30. M.A. Kinch, Fundamentals of Infrared Detector Materials (Bellingham, WA: SPIE Press, 2007).

    Book  Google Scholar 

  31. A.R. Beattie and P.T. Landsberg, Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 258, 486 (1960).

    Article  Google Scholar 

  32. W.E. Tennant, J. Electron. Mater. 39, 1030 (2010).

    Article  Google Scholar 

  33. A. Gaucher, J. Baylet, J. Rothman, E. Martinez, and C. Cardinaud, J. Electron. Mater. 42, 3006 (2013).

    Article  Google Scholar 

  34. M.C. Chen, L. Colombo, J.A. Dodge, and J.H. Tregilgas, J. Electron. Mater. 24, 539 (1995).

    Article  Google Scholar 

  35. K. Moazzami, J. Phillips, D. Lee, S. Krishnamurthy, G. Benoit, Y. Fink, and T. Tiwald, J. Electron. Mater. 34, 773 (2005).

    Article  Google Scholar 

  36. J.P. Rosbeck, J. Appl. Phys. 53, 6430 (1982).

    Article  Google Scholar 

  37. H. Wen, B. Pinkie, and E. Bellotti, J. Appl. Phys. 118, 15702 (2015).

    Article  Google Scholar 

  38. M.A. Kinch, F. Aqariden, D. Chandra, P.K. Liao, H.F. Schaake, and H.D. Shih, J. Electron. Mater. 34, 880 (2005).

    Article  Google Scholar 

  39. H. Nishino, K. Ozaki, M. Tanaka, T. Saito, H. Ebe, and Y. Miyamoto, J. Cryst. Growth 214, 275 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Direction Générale de l’Armement (DGA) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rothman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delacourt, B., Ballet, P., Boulard, F. et al. Temperature and Injection Dependence of Photoluminescence Decay in Midwave Infrared HgCdTe. J. Electron. Mater. 46, 6817–6828 (2017). https://doi.org/10.1007/s11664-017-5728-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5728-x

Keywords

Navigation