Skip to main content
Log in

Anisotropy in a high Landau level due to effective electron-electron interactions

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Quantization of Hall resistivity in strongly correlated two-dimensional electronic systems at high magnetic fields generally indicates the stabilization of novel electronic quantum liquid phases of matter. This is the nature of the integer and fractional quantum Hall states that stabilize at integer and fractional odd-denominator (not always, though) filling factors of the Landau level. Away from certain filling factors that represent quantum Hall liquid states, different phases, some of them with unusually high magneto-transport anisotropy have been known to stabilize specially in high Landau levels. In this work, we try to understand this anisotropic behaviour in terms of effective electron-electron interaction potentials. To this effect, we implement a full projection of the original Coulomb interaction potential in the suitable Landau level. We find out that, in high Landau levels, thus for relatively weak magnetic fields, a semi-classical description of the interaction potential between electrons appear to be an adequate choice. The features of this semi-classical interaction potential in this limit suggest ways how the energetic balance between density waves and/or liquid crystalline phases might be sensitively affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  2. D. C. Tsui, H. L. Stormer and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

    Article  ADS  Google Scholar 

  3. O. Ciftja, J. Math. Phys. 52, 122105 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  4. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

    Article  ADS  Google Scholar 

  5. J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).

    Article  ADS  Google Scholar 

  6. R. L. Willett, J. P. Eisenstein, H. L. Stormer, D. C. Tsui, A. C. Gossard and J. H. English, Phys. Rev. Lett. 59, 1779 (1987).

    Article  ADS  Google Scholar 

  7. B. I. Halperin, P. A. Lee and N. Read, Phys. Rev. B 47, 7312 (1993).

    Article  ADS  Google Scholar 

  8. O. Ciftja, Eur. Phys. J. B. 13, 671 (2000).

    Article  ADS  Google Scholar 

  9. M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. 82, 394 (1999).

    Article  ADS  Google Scholar 

  10. M. M. Fogler, A. A. Koulakov and B. I. Shklovskii, Phys. Rev. B 54, 1853 (1996).

    Article  ADS  Google Scholar 

  11. R. Moessner and J. T. Chalker, Phys. Rev. B 54, 5006 (1996).

    Article  ADS  Google Scholar 

  12. E. Fradkin and S. A. Kivelson, Phys. Rev. B 59, 8065 (1999).

    Article  ADS  Google Scholar 

  13. O. Ciftja and C. Wexler, Phys. Rev. B 65, 205307 (2002).

    Article  ADS  Google Scholar 

  14. C. Wexler and O. Ciftja, Int. J. Mod. Phys. B 20, 747 (2006).

    Article  ADS  Google Scholar 

  15. I. Ia. Pomeranchuk, JETP 35, 524 (1958).

    Google Scholar 

  16. Q. M. Doan and E. Manousakis, Phys. Rev. B 75, 195433 (2007).

    Article  ADS  Google Scholar 

  17. J. Quintanilla, M. Haque and A. J. Schofield, Phys. Rev. B 78, 035131 (2008).

    Article  ADS  Google Scholar 

  18. G. Murthy and R. Shankar, Rev. Mod. Phys. 75, 1101 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. O. Ciftja, C. M. Lapilli and C. Wexler, Phys. Rev. B 69, 125320 (2004).

    Article  ADS  Google Scholar 

  20. C. Wexler and O. Ciftja, J. Phys.: Condens. Matter 14, 3705 (2002).

    Article  ADS  Google Scholar 

  21. O. Ciftja, B. Cornelius, K. Brown and E. Taylor, Phys. Rev. B 83, 193101 (2011).

    Article  ADS  Google Scholar 

  22. O. Ciftja, Physica B 404, 227 (2009).

    Article  ADS  Google Scholar 

  23. O. Ciftja, N. Ockleberry and C. Okolo, Mod. Phys. Lett. B 25, 1983 (2011).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orion Ciftja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciftja, O. Anisotropy in a high Landau level due to effective electron-electron interactions. Journal of the Korean Physical Society 62, 1550–1554 (2013). https://doi.org/10.3938/jkps.62.1550

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.1550

Keywords

Navigation