Advertisement

Psychonomic Bulletin & Review

, Volume 25, Issue 4, pp 1343–1350 | Cite as

Parallel, exhaustive processing underlies logarithmic search functions: Visual search with cortical magnification

  • Zhiyuan Wang
  • Alejandro Lleras
  • Simona Buetti
Brief Report

Abstract

Our lab recently found evidence that efficient visual search (with a fixed target) is characterized by logarithmic Reaction Time (RT) × Set Size functions whose steepness is modulated by the similarity between target and distractors. To determine whether this pattern of results was based on low-level visual factors uncontrolled by previous experiments, we minimized the possibility of crowding effects in the display, compensated for the cortical magnification factor by magnifying search items based on their eccentricity, and compared search performance on such displays to performance on displays without magnification compensation. In both cases, the RT × Set Size functions were found to be logarithmic, and the modulation of the log slopes by target–distractor similarity was replicated. Consistent with previous results in the literature, cortical magnification compensation eliminated most target eccentricity effects. We conclude that the log functions and their modulation by target–distractor similarity relations reflect a parallel exhaustive processing architecture for early vision.

Keywords

Visual search Cortical magnification Eccentricity Similarity 

Notes

Acknowledgements

The authors would like to thank Dr. Daniel Simons for his suggestion on data analysis approach.

References

  1. Buetti, S., Cronin, D. A., Madison, A. M., Wang, Z., & Lleras, A. (2016). Towards a better understanding of parallel visual processing in human vision: Evidence for exhaustive analysis of visual information. Journal of Experimental Psychology: General, 145(6), 672.CrossRefGoogle Scholar
  2. Carrasco, M., Evert, D. L., Chang, I., & Katz, S. M. (1995). The eccentricity effect: Target eccentricity affects performance on conjunction searches. Attention, Perception, & Psychophysics, 57(8), 1241–1261.CrossRefGoogle Scholar
  3. Carrasco, M., & Frieder, K. S. (1997). Cortical magnification neutralizes the eccentricity effect in visual search. Vision Research, 37(1), 63–82.CrossRefPubMedGoogle Scholar
  4. Carrasco, M., McLean, T. L., Katz, S. M., & Frieder, K. S. (1998). Feature asymmetries in visual search: Effects of display duration, target eccentricity, orientation and spatial frequency. Vision Research, 38(3), 347–374.CrossRefPubMedGoogle Scholar
  5. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.CrossRefPubMedGoogle Scholar
  6. Dow, B. M., Snyder, A. Z., Vautin, R. G., & Bauer, R. (1981). Magnification factor and receptive field size in foveal striate cortex of the monkey. Experimental Brain Research, 44(2), 213–228.CrossRefPubMedGoogle Scholar
  7. Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433.CrossRefPubMedGoogle Scholar
  8. Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2, 194–203.CrossRefPubMedGoogle Scholar
  9. Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in Psychtoolbox-3. Perception, 36(14), 1.Google Scholar
  10. Lagroix, H. E., Di Lollo, V., & Spalek, T. M. (2015). Is pop-out visual search attentive or preattentive? Yes!. Journal of Experimental Psychology: Human Perception and Performance, 41(2), 556.PubMedGoogle Scholar
  11. Lleras, A., Buetti, S., & Mordkoff, J. T. (2013). When do the effects of distractors provide a measure of distractibility. The Psychology of Learning and Motivation, 59, 261–316.CrossRefGoogle Scholar
  12. Madison, A., Lleras, A., & Buetti, S. (2017). The role of crowding in parallel search: Peripheral pooling is not responsible for logarithmic efficiency in parallel search. Attention, Perception, & Psychophysics, 80(2), 353–372.  https://doi.org/10.3758/s13414-017-1441-3 Google Scholar
  13. Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Attention, Perception, & Psychophysics, 57(1), 1–17.CrossRefGoogle Scholar
  14. Neider, M. B., & Zelinsky, G. J. (2008). Exploring set size effects in scenes: Identifying the objects of search. Visual Cognition, 16(1), 1–10.CrossRefGoogle Scholar
  15. Pelli, D. G. (2008). Crowding: A cortical constraint on object recognition. Current Opinion in Neurobiology, 18(4), 445–451.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Rovamo, J., & Virsu, V. (1979). An estimation and application of the human cortical magnification factor. Experimental Brain Research, 37(3), 495–510.CrossRefPubMedGoogle Scholar
  17. Strasburger, H., Rentschler, I., & Jüttner, M. (2011). Peripheral vision and pattern recognition: A review. Journal of Vision, 11(5), 13–13.  https://doi.org/10.1167/11.5.13 CrossRefPubMedGoogle Scholar
  18. Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135, 77–99.CrossRefPubMedGoogle Scholar
  19. Townsend, J. T. (1990). Serial vs. parallel processing: Sometimes they look like Tweedledum and Tweedledee but they can (and should) be distinguished. Psychological Science, 1(1), 46–54.CrossRefGoogle Scholar
  20. Townsend, J. T., & Ashby, F. G. (1983). Stochastic modeling of elementary psychological processes. Cambridge, UK: Cambridge University Press Archive.Google Scholar
  21. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.CrossRefPubMedGoogle Scholar
  22. Wang, Z., Buetti, S., & Lleras, A. (2017). Predicting search performance in heterogeneous visual search scenes with real-world objects. Collabra: Psychology, 3(1), 6.  https://doi.org/10.1525/collabra.53 CrossRefGoogle Scholar
  23. Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1, 202–238.CrossRefGoogle Scholar
  24. Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1.  https://doi.org/10.1038/s41562-017-0058
  25. Wolfe, J. M., O’Neill, P., & Bennett, S. C. (1998). Why are there eccentricity effects in visual search? Visual and attentional hypotheses. Perception & Psychophysics, 60(1), 140–156.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of IllinoisChampaignUSA

Personalised recommendations