Adams, S. V., Wennekers, T., Cangelosi, A., Garagnani, M., & Pulvermuller, F. (2014). Learning visual-motor cell assemblies for the iCub robot using a neuroanatomically grounded neural network. In 2014 I.E. Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB) (pp. 1–8).
Akpinar, E., & Berger, J. (2015). Drivers of cultural success: The case of sensory metaphors. Journal of Personality and Social Psychology, 109, 20–34.
Article
PubMed
Google Scholar
Allen, S. W., & Brooks, L. R. (1991). Specializing the operation of an explicit rule. Journal of Experimental Psychology: General, 120, 3–19.
Article
Google Scholar
Amunts, K., & Zilles, K. (2015). Architectonic mapping of the human brain beyond Brodmann. Neuron, 88, 1086–1107.
Anderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33, 245–266.
Article
PubMed
Google Scholar
Andrews, M., Frank, S., & Vigliocco, G. (2014). Reconciling embodied and distributional accounts of meaning in language. Topics in Cognitive Science, 6, 359–370.
Andrews, M., Vigliocco, G., & Vinson, D. (2009). Integrating experiential and distributional data to learn semantic representations. Psychological Review, 116, 463–498.
Article
PubMed
Google Scholar
Baroni, M., & Lenci, A. (2010). Distributional memory: A general framework for corpus-based semantics. Computational Linguistics, 36, 673–721.
Barsalou, L. W. (in press-a). Can cognition be reduced to action? Processes that mediate stimuli and responses make human action possible. In A. K. Engel, K. J. Friston, & D. kragic, Where’s the action? The pragmatic turn in cognitive science (Strüngmann Forum Reports, Vol. 18. J. Lupp, Series Ed.). Cambridge, MA: MIT Press.
Barsalou, L. W. (in press-b). Cognitively plausible theories of concept composition. In Y. Winter & J. A. Hampton, Compositionality and concepts in linguistics and psychology. London: Springer Publishing.
Barsalou, L. W. (in press-c). Situated conceptualization: Theory and applications. In Y. Coello & M. H. Fischer, Foundations of embodied cognition. East Sussex: Psychology Press.
Barsalou, L. W. (1990). On the indistinguishability of exemplar memory and abstraction in category representation. In T. K. Srull & R. S. W. Jr, Content and process specificity in the effects of prior experiences: Advances in social cognition (Vol. 3, pp. 61–88). Hillsdale, NJ: Erlbaum.
Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–660.
PubMed
Google Scholar
Barsalou, L. W. (2003a). Abstraction in perceptual symbol systems. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 1177–1187.
Article
PubMed
PubMed Central
Google Scholar
Barsalou, L. W. (2003b). Situated simulation in the human conceptual system. Language and Cognitive Processes, 18, 513–562.
Article
Google Scholar
Barsalou, L. W. (2008a). Grounded cognition. Annual Review of Psychology, 59, 617–645.
Article
PubMed
Google Scholar
Barsalou, L. W. (2008b). Grounding symbolic operations in the brain’s modal systems. In G. R. Semin & E. R. Smith (Eds.), Embodied grounding: Social, cognitive, affective, and neuroscientific approaches (pp. 9–42). New York: Cambridge University Press.
Chapter
Google Scholar
Barsalou, L. W. (2009). Simulation, situated conceptualization, and prediction. Philosophical Transactions of the Royal Society, B: Biological Sciences, 364, 1281–1289.
Article
PubMed Central
Google Scholar
Barsalou, L. W. (2010). Grounded cognition: past, present, and future. Topics in Cognitive Science, 2, 716–724.
Article
PubMed
Google Scholar
Barsalou, L. W. (2012). The human conceptual system. In M. Spivey, K. McRae, & M. F. Joanisse (Eds.), The Cambridge handbook of psycholinguistics (pp. 239–258). New York: Cambridge University Press.
Chapter
Google Scholar
Barsalou, L. W., Breazeal, C., & Smith, L. B. (2007). Cognition as coordinated non-cognition. Cognitive Processing, 8, 79–91.
Article
PubMed
Google Scholar
Barsalou, L. W., & Hale, C. (1993). Components of conceptual representation. From feature lists to recursive frames. In I. Van Mechelen, J. A. Hampton, R. Michalski, & P. Theuns (Eds.), Categories and concepts: Theoretical views and inductive data analysis (Hale, C, pp. 97–144). San Diego: Academic Press.
Google Scholar
Barsalou, L. W., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). Language and simulation in conceptual processing. In M. De Vega, A. M. Glenberg, & A. C. Graesser (Eds.), Symbols, embodiment, and meaning (pp. 245–283). Oxford: Oxford University Press.
Chapter
Google Scholar
Barsalou, L. W., Simmons, W. K., Barbey, A. K., & Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7, 84–91.
Article
PubMed
Google Scholar
Barsalou, L. W., & Wiemer-Hastings, K. (2005). Situating abstract concepts. In D. Pecher & R. A. Zwaan, (pp. 129–163). New York: Cambridge University Press.
Binder, J. R. (2016). In defense of abstract conceptual representations. Psychonomic Bulletin & Review. doi:10.3758/s13423-015-0909-1.
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where Is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767–2796.
Binder, J. R., Westbury, C. F., McKiernan, K. A., Possing, E. T., & Medler, D. A. (2005). Distinct brain systems for processing concrete and abstract concepts. Journal of Cognitive Neuroscience, 17, 905–917.
Article
PubMed
Google Scholar
Blouw, P., Solodkin, E., Thagard, P., & Eliasmith, C. (2015). Concepts as semantic pointers: A framework and computational model. Cognitive Science, 1–35.
Braga, R. M., Wilson, L. R., Sharp, D. J., Wise, R. J. S., & Leech, R. (2013). Separable networks for top-down attention to auditory non-spatial and visuospatial modalities. NeuroImage, 74, 77–86.
Article
PubMed
PubMed Central
Google Scholar
Buckner, R. L., & Krienen, F. M. (2013). The evolution of distributed association networks in the human brain. Trends in Cognitive Sciences, 17, 648–665.
Article
PubMed
Google Scholar
Caligiore, D., Borghi, A. M., Parisi, D., & Baldassarre, G. (2010). TRoPICALS: A computational embodied neuroscience model of compatibility effects. Psychological Review, 117, 1188–1228.
Article
PubMed
Google Scholar
Caramazza, A., & Shelton, J. (1998). Domain-specific knowledge systems in the brain: The animate-inanimate distinction. Journal of Cognitive Neuroscience, 10, 1–34.
Article
PubMed
Google Scholar
Casasanto, D., & Lupyan, G. (2015). All concepts are ad hoc concepts. In E. Margolis & S. Laurence (Eds.), The conceptual mind: New directions in the study of concepts (pp. 543–566). Cambridge, MA: MIT Press.
Google Scholar
Chemero, A., & Turvey, M. T. (2011). Philosophy for the rest of Cognitive Science. Topics in Cognitive Science, 3, 425–437.
Chomsky, N. (1959). A review of B F. Skinner’s Verbal Behavior. Language, 35, 26–58.
Article
Google Scholar
Connell, L., & Lynott, D. (2013). Flexible and fast: Linguistic shortcut affects both shallow and deep conceptual processing. Psychonomic Bulletin & Review, 20, 542–550.
Article
Google Scholar
Connell, L., & Lynott, D. (2014). Principles of representation: Why you can’t represent the same concept twice. Topics in Cognitive Science, 6, 390–406.
Article
PubMed
Google Scholar
Damasio, A. R. (1989). Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition. Cognition, 33, 25–62.
Article
PubMed
Google Scholar
Devereux, B. J., Clarke, A., Marouchos, A., & Tyler, L. K. (2013). Representational similarity analysis reveals commonalities and differences in the semantic processing of words and objects. The Journal of Neuroscience, 33, 18906–18916.
Donald, M. (1993). Precis of Origins of the modern mind: Three stages in the evolution of culture and cognition. Behavioral and Brain Sciences, 16, 737–748.
Dove, G. (2009). Beyond perceptual symbols: A call for representational pluralism. Cognition, 110, 412–431.
Dove, G. (2016). Three symbol ungrounding problems: Abstract concepts and the future of embodied cognition. Psychonomic Bulletin & Review. doi:10.3758/s13423-015-0825-4.
Drane, D. L., Ojemann, G. A., Aylward, E., Ojemann, J. G., Johnson, L. C., Silbergeld, D. L., & Tranel, D. (2008). Category-specific naming and recognition deficits in temporal lobe epilepsy surgical patients. Neuropsychologia, 46, 1242–1255.
Article
PubMed
Google Scholar
Drane, D. L., Ojemann, G. A., Ojemann, J. G., Aylward, E., Silbergeld, D. L., Miller, J. W., & Tranel, D. (2009). Category-specific recognition and naming deficits following resection of a right anterior temporal lobe tumor in a patient with atypical language lateralization. Cortex, 45, 630–640.
Article
PubMed
Google Scholar
Drane, D. L., Ojemann, J. G., Phatak, V., Loring, D. W., Gross, R. E., Hebb, A. O., Silbergeld, D.L., Miller, J.W., Voets, N.L., Saindane, A.M., Barsalou, L.W., Meador, K.J., Ojemann, G.A., & Tranel, D. (2013). Famous face identification in temporal lobe epilepsy: Support for a multimodal integration model of semantic memory. Cortex, 49, 1648–1667.
Eliasmith, C. (2013). How to build a brain: A neural architecture for biological cognition. Oxford: Oxford University Press.
Engel, A. K., Maye, A., Kurthen, M., & König, P. (2013). Where’s the action? The pragmatic turn in cognitive science. Trends in Cognitive Sciences, 17, 202–209.
Article
PubMed
Google Scholar
Erk, K. (2012). Vector space models of word meaning and phrase meaning: A Survey. Language and Linguistics Compass, 6, 635–653.
Erk, K., & Padó, S. (2008). A structured vector space model for word meaning in context. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (pp. 897–906). Stroudsburg, PA, USA: Association for Computational Linguistics. Retrieved from.
Fairhall, S. L., & Caramazza, A. (2013). Brain regions that represent amodal conceptual knowledge. Journal of Neuroscience, 33, 10552–10558.
Farah, M. J., Wong, A. B., Monheit, M. A., & Morrow, L. A. (1989). Parietal lobe mechanisms of spatial attention: Modality-specific or supramodal? Neuropsychologia, 27, 461–470.
Article
PubMed
Google Scholar
Fernandino, L., Binder, J. R., Desai, R. H., Pendl, S. L., Humphries, C. J., Gross, W. L., Seidenberg, M. S. (in press). Concept representation reflects multimodal abstraction: A framework for embodied semantics. Cerebral Cortex.
Fodor, J. A. (1975). The language of thought. Harvard University Press.
Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28, 3–71.
Article
PubMed
Google Scholar
Ganguli, S., & Sompolinsky, H. (2012). Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. Annual Review of Neuroscience, 35, 485–508.
Gawronski, B., & Cesario, J. (2013). Of mice and men What animal research can tell us about context effects on automatic responses in humans. Personality and Social Psychology Review, 17, 187–215.
Gibson, J. J. (1979). The ecological approach to visual perception. Houghton Mifflin.
Glaser, W. R. (1992). Picture naming. Cognition, 42, 61–105.
Article
PubMed
Google Scholar
Goldinger, S. D., Papesh, M. H., Barnhart, A. S., Hansen, W. A., & Hout, M. C. (2016). The poverty of embodied cognition. Psychonomic Bulletin & Review. doi:10.3758/s13423-015-0860-1.
Gotts, S. J. (2016). Incremental learning of perceptual and conceptual representations and the puzzle of neural repetition suppression. Psychonomic Bulletin & Review. doi:10.3758/s13423-015-0855-y.
Grill-Spector, K., & Weiner, K. S. (2014). The functional architecture of the ventral temporal cortex and its role in categorization. Nature Reviews Neuroscience, 15, 536–548.
Article
PubMed
PubMed Central
Google Scholar
Hampton, J. A. (2006). Concepts as prototypes. In B. H. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol 46) (pp. 79–113). San Diego: Elsevier Academic Press.
Google Scholar
Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42, 335–346.
Article
Google Scholar
Hauk, O. (2016). Only time will tell – why temporal information is essential for our neuroscientific understanding of semantics. Psychonomic Bulletin & Review. doi:10.3758/s13423-015-0873-9.
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33, 61–83.
Article
PubMed
Google Scholar
Hinton, G. E. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504–507.
Hsu, N. S., Frankland, S. M., & Thompson-Schill, S. L. (2012). Chromaticity of color perception and object color knowledge. Neuropsychologia, 50,
327–333.
Huettig, F., Rommers, J., & Meyer, A. S. (2011). Using the visual world paradigm to study language processing: A review and critical evaluation. Acta Psychologica, 137, 151–171.
Article
PubMed
Google Scholar
Humphries, C., Binder, J., Medler, D., & Liebenthal, E. (2006). Syntactic and semantic modulation of neural activity during auditory sentence comprehension. Journal of Cognitive Neuroscience, 18, 665–679.
Jamrozik, A., McQuire, M., Cardillo, E.R., & Chatterjee, A. (2016). Metaphor: Bridging embodiment to abstraction. Psychonomic Bulletin & Review. doi:10.3758/s13423-015-0861-0.
Kemmerer, D. (2006). The semantics of space: Integrating linguistic typology and cognitive neuroscience. Neuropsychologia, 44, 1607–1621.
Article
PubMed
Google Scholar
Kemmerer, D. (2015a). Are the motor features of verb meanings represented in the precentral motor cortices? Yes, but within the context of a flexible, multilevel architecture for conceptual knowledge. Psychonomic Bulletin & Review, 22, 1068–1075.
Kemmerer, D. (2015b). Are we ever aware of concepts? A critical question for the Global Neuronal Workspace, Integrated Information, and Attended Intermediate-Level Representation theories of consciousness. Neuroscience of Consciousness, 2015(1), niv006.
Kemmerer, D., Castillo, J. G., Talavage, T., Patterson, S., & Wiley, C. (2008). Neuroanatomical distribution of five semantic components of verbs: Evidence from fMRI. Brain and Language, 107, 16–43.
Article
PubMed
Google Scholar
Kiefer, M., Adams, S. C., & Zovko, M. (2012). Attentional sensitization of unconscious visual processing: Top-down influences on masked priming. Advances in Cognitive Psychology, 8, 50–61.
Article
PubMed
PubMed Central
Google Scholar
Kiefer, M., & Barsalou, L. W. (2013). Grounding the human conceptual system in perception, action, and internal states. In W. Prinz, M. Beisert, & A. Herwig (Eds.), Action science: Foundations of an emerging discipline (pp. 381–407). Cambridge: MIT Press.
Chapter
Google Scholar
Lachman, R., Lachman, J. L., & Butterfield, E. C. (1979). Cognitive psychology and information processing: An introduction. Hillsdale: Erlbaum.
Lambon Ralph, M. A., Sage, K., Jones, R. W., & Mayberry, E. J. (2010). Coherent concepts are computed in the anterior temporal lobes. Proceedings of the National Academy of Sciences, 107, 2717–2722.
Article
Google Scholar
Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211–240.
Article
Google Scholar
Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W. (2013). Handbook of latent semantic analysis. East Sussex: Psychology Press.
Langacker, R. W. (1986). An introduction to cognitive grammar. Cognitive Science, 10, 1–40.
Langacker, R. W. (2008). Cognitive grammar: A basic introduction. Oxford: Oxford University Press.
Book
Google Scholar
Lebois, L. A. M., Wilson-Mendenhall, C. D., & Barsalou, L. W. (2015). Are automatic conceptual cores the gold standard of semantic processing? The context-dependence of spatial meaning in grounded congruency effects. Cognitive Science, 39, 1764–1801.
Article
PubMed
Google Scholar
Legrand, D., & Ruby, P. (2009). What is self-specific? Theoretical investigation and critical review of neuroimaging results. Psychological Review, 116, 252–282.
Article
PubMed
Google Scholar
Leshinskaya, A., & Caramazza, A. (2016). For a cognitive neuroscience of concepts: Moving beyond the grounding issue. Psychonomic Bulletin & Review. doi:10.3758/s13423-015-0870-z.
Louwerse, M. M. (2011). Symbol interdependency in symbolic and embodied cognition. Topics in Cognitive Science, 3, 273–302.
Article
PubMed
Google Scholar
Louwerse, M. M., & Connell, L. (2011). A taste of words: Linguistic context and perceptual simulation predict the modality of words. Cognitive Science, 35, 381–398.
Louwerse, M. M., & Jeuniaux, P. (2010). The linguistic and embodied nature of conceptual processing. Cognition, 114, 96–104.
Article
PubMed
Google Scholar
Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: A network model of category learning. Psychological Review, 111, 309–332.
Machery, E. (2007). Concept empiricism: A methodological critique. Cognition, 104, 19–46.
Article
PubMed
Google Scholar
Machery, E. (2016). The amodal brain and the offloading hypothesis. Psychonomic Bulletin & Review. doi:10.3758/s13423-015-0878-4.
Mahon, B. Z. (2015). What is embodied about cognition? Language, Cognition and Neuroscience, 30, 420–429.
Article
PubMed
Google Scholar
Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology-Paris, 102, 59–70.
Article
Google Scholar
Margolis, E., & Laurence, S. (1999). Concepts: Core readings. MIT Press.
Martin, A. (2007). The representation of object concepts in the brain. Annual Review of Psychology, 58, 25–45.
Article
PubMed
Google Scholar
Martin, A. (2009). Circuits in mind: The neural foundations for object concepts. In M. Gazzaniga (Ed.), The cognitive neurosciences (4th ed., pp. 1031–1045). Cambridge, MA: MIT Press.
Martin, A. (2016). GRAPES—Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain. Psychonomic Bulletin & Review. doi:10.3758/s13423-015-0842-3.
Martin, A., & Chao, L. L. (2001). Semantic memory and the brain: structure and processes. Current Opinion in Neurobiology, 11, 194–201.
Article
PubMed
Google Scholar
Martin, A., Simmons, W. K., Beauchamp, M. S., & Gotts, S. J. (2014). Is a single ‘hub’, with lots of spokes, an accurate description of the neural architecture of action semantics? Physics of Life Reviews, 11,
261–262. 2.
McClelland, J. L., & Rumelhart, D. E. (1985). Distributed memory and the representation of general and specific information. Journal of Experimental Psychology: General, 114, 159–188.
Article
Google Scholar
McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods, 37, 547–559.
Article
PubMed
Google Scholar
McRae, K., & Jones, M. N. (2013). Semantic memory. In D. Reisberg (Ed.), The Oxford Handbook of Cognitive Psychology (pp. 206–219). Oxford: Oxford University Press.
Google Scholar
Meyer, K., & Damasio, A. (2009). Convergence and divergence in a neural architecture for recognition and memory. Trends in Neurosciences, 32, 376–382.
Article
PubMed
Google Scholar
Mitchell, T. M., Shinkareva, S. V., Carlson, A., Chang, K.-M., Malave, V. L., Mason, R. A., & Just, M. A. (2008). Predicting human brain activity associated with the meanings of nouns. Science, 320, 1191–1195.
Moors, A., & De Houwer, J. (2006). Automaticity: A theoretical and conceptual analysis. Psychological Bulletin, 132, 297–326.
Murphy, G. L. (2002). The big book of concepts. Cambridge, MA: MIT Press.
Google Scholar
Murphy, G. L. (2016). Is there an exemplar theory of concepts? Psychonomic Bulletin & Review. doi:10.3758/s13423-015-0834-3.
Niedenthal, P. M., Mermillod, M., Maringer, M., & Hess, U. (2010). The Simulation of Smiles (SIMS) Model: Embodied simulation and the meaning of facial expression. Behavioral and Brain Sciences, 33, 417–433.
O’Regan, J. K., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24, 939–973.
Article
PubMed
Google Scholar
Padó, S., & Lapata, M. (2007). Dependency-based construction of semantic space models. Computational Linguistics, 33, 161–199.
Paivio, A. (1986). Mental representations: A dual-coding approach. Oxford: Oxford University Press.
Google Scholar
Papies, E. K. (2013). Tempting food words activate eating simulations. Frontiers in Psychology, 4, 1–12.
Article
Google Scholar
Papies, E. K., & Barsalou, L. W. (2015). Grounding desire and motivated behavior: A theoretical framework and review of empirical evidence. In W. Hofmann & L. F. Nordgren (Eds.), The psychology of desire (pp. 36-60). New York: Guilford Press.
Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8, 976–987.
Article
PubMed
Google Scholar
Pulvermüller, F. (2012). Meaning and the brain: The neurosomatics of referential, interactive, and combinatorial knowledge. Journal of Neurolinguistics, 25, 423–459.
Article
Google Scholar
Pulvermüller, F. (2013). How neurons make meaning: brain mechanisms for embodied and abstract-symbolic semantics. Trends in Cognitive Sciences, 17, 458–470.
Article
PubMed
Google Scholar
Pulvermüller, F., & Fadiga, L. (2010). Active perception: sensorimotor circuits as a cortical basis for language. Nature Reviews Neuroscience, 11, 351–360.
Article
PubMed
Google Scholar
Pulvermüller, F., & Garagnani, M. (2014). From sensorimotor learning to memory cells in prefrontal and temporal association cortex: A neurocomputational study of disembodiment. Cortex, 57, 1–21.
Article
PubMed
Google Scholar
Pylyshyn, Z. W. (1984). Computation and cognition. Cambridge: MIT Press.
Google Scholar
Reilly, J., Peelle, J. A., Garcia, A., & Crutch, S. J. (2016). Linking somatic and symbolic representation in semantic memory: the dynamic multilevel reactivation framework. Psychonomic Bulletin & Review. doi:10.3758/s13423-015-0824-5.
Rogers, T. T., & McClelland, J. L. (2004). Semantic cognition: A parallel distributed processing approach. Cambridge: MIT Press.
Google Scholar
Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 7, 573–605.
Article
Google Scholar
Ross, B. H., & Murphy, G. L. (1999). Food for thought: Cross-classification and category organization in a complex real-world domain. Cognitive Psychology, 38, 495–553.
Rudebeck, P. H., & Murray, E. A. (2014). The orbitofrontal oracle: Cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron, 84, 1143–1156.
Rumiati, R. I., & Foroni, F. (2016). We are what we eat: How food is represented in our mind/brain. Psychonomic Bulletin & Review. doi:10.3758/s13423-015-0908-2.
Santiago, J., Román, A., & Ouellet, M. (2011). Flexible foundations of abstract thought: A review and a theory. In A. Maass & T. W. Schubert (Eds.), Spatial dimensions of social thought (pp. 41–110). Mouton de Gruyter: Berlin.
Google Scholar
Schrodt, F., Layher, G., Neumann, H., & Butz, M. V. (2015). Embodied learning of a generative neural model for biological motion perception and inference. Frontiers in Computational Neuroscience, 9, 79.
Article
PubMed
PubMed Central
Google Scholar
Schwanenflugel, P. J. (1991). Why are abstract concepts so hard to understand? In P. J. Schwanenflugel (Ed.), The psychology of word meanings (pp. 223–250). Hillsdale: Lawrence Erlbaum Associates.
Google Scholar
Schwiedrzik, C. M., Bernstein, B., & Melloni, L. (2016). Motion along the mental number line reveals shared representations for numerosity and space. eLife, 5.
Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3, 417–424.
Article
Google Scholar
Simmons, W. K., & Barsalou, L. W. (2003). The similarity-in-topography principle: Reconciling theories of conceptual deficits. Cognitive Neuropsychology, 20, 451–486.
Article
PubMed
Google Scholar
Simmons, W. K., Ramjee, V., Beauchamp, M. S., McRae, K., Martin, A., & Barsalou, L. W. (2007). A common neural substrate for perceiving and knowing about color. Neuropsychologia, 45, 2802–2810.
Article
PubMed
PubMed Central
Google Scholar
Smith, E. E., & Medin, D. L. (1981). Categories and concepts. Cambridge: Harvard University Press.
Book
Google Scholar
Sporns, O. (Ed.). (2010). Analysis and function of large-scale brain networks. Washington, DC: Society for Neuroscience.
Google Scholar
Talmy, L. (1985). Lexicalization patterns: Semantic structure in lexical forms. Language Typology and Syntactic Description, 3, 57–149.
Google Scholar
Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268, 1632–1634.
Article
PubMed
Google Scholar
Thagard, P., & Stewart, T. C. (2011). The AHA! experience: Creativity through emergent binding in neural networks. Cognitive Science, 35, 1–33.
Tomasino, B., & Rumiati, R. I. (2013). At the mercy of strategies: The role of motor representations in language understanding. Frontiers in Psychology, 4.
van Dam, W. O., Brazil, I. A., Bekkering, H., & Rueschemeyer, S.-A. (2014). Flexibility in embodied language processing: Context effects in lexical access. Topics in Cognitive Science, 6, 407–424.
Van Doren, L., Dupont, P., De Grauwe, S., Peeters, R., & Vandenberghe, R. (2010). The amodal system for conscious word and picture identification in the absence of a semantic task. NeuroImage, 49, 3295–3307.
Article
PubMed
Google Scholar
Van Opstal, F., & Verguts, T. (2013). Is there a generalized magnitude system in the brain? Behavioral, neuroimaging, and computational evidence. Frontiers in Psychology, 4.
Waldhauser, G. T., Braun, V., & Hanslmayr, S. (2016). Episodic memory retrieval functionally relies on very rapid reactivation of sensory information. The Journal of Neuroscience, 36, 251–260.
Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7, 483–488.
Article
PubMed
Google Scholar
Wang, X., Han, Z., He, Y., Caramazza, A., Song, L., & Bi, Y. (2013). Where color rests: Spontaneous brain activity of bilateral fusiform and lingual regions predicts object color knowledge performance. NeuroImage, 76, 252–263.
Article
PubMed
Google Scholar
Wilson-Mendenhall, C. D., Simmons, W. K., Martin, A., & Barsalou, L. W. (2013). Contextual processing of abstract concepts reveals neural representations of nonlinguistic semantic content. Journal of Cognitive Neuroscience, 25, 920–935.
Article
PubMed
PubMed Central
Google Scholar
Wilson, R. C., Takahashi, Y. K., Schoenbaum, G., & Niv, Y. (2014). Orbitofrontal cortex as a cognitive map of task space. Neuron, 81, 267–279.
Wong, C., & Gallate, J. (2012). The function of the anterior temporal lobe: A review of the empirical evidence. Brain Research, 1449, 94–116.
Article
PubMed
Google Scholar
Yates, M. J., Loetscher, T., & Nicholls, M. E. R. (2012). A generalized magnitude system for space, time, and quantity? A cautionary note. Journal of Vision, 12, 9–9.
Article
PubMed
Google Scholar
Yee, E., & Thompson-Schill, S. L. (2016). Putting concepts into context. Psychonomic Bulletin & Review. doi:10.3758/s13423-015-0948-7.
Zwaan, R. A. (2004). The immersed experiencer: Toward an embodied theory of language comprehension. In B. H. Ross (Ed.), The Psychology of Learning and Motivation: Advances in Research and Theory (Vol. 44, pp. pp. 35–pp. 62). San Diego: Elsevier Academic Press.
Google Scholar
Zwaan, R. A. (2016). Situation models, mental simulations, and abstract concepts in discourse comprehension. Psychonomic Bulletin & Review. doi:10.3758/s13423-015-0864-x.
Zwaan, R. A., & Madden, C. J. (2005). Embodied sentence comprehension. In D. Pecher & R. A. Zwaan (Eds.), Grounding cognition: The role of perception and action in memory, language, and thinking (pp. 224–245). New York: Cambridge University Press.
Chapter
Google Scholar