Skip to main content

The Challenges of Abstract Concepts

  • Chapter
  • First Online:
Handbook of Embodied Psychology

Abstract

Some have recently suggested that abstract concepts do not constitute a substantial challenge to embodied cognition because they do not form a unified category. In this chapter, I argue that abstract concepts are indeed heterogeneous but as such pose several distinct theoretical challenges. After surveying the current evidence for, and responses to, these challenges, I conclude that a comprehensive embodied account that addresses the diversity of abstract concepts remains possible. Several desiderata for a future theory emerge from this critical review. A successful theory will need to embrace not only distributed multimodal representations but also recognize the importance of the emotions and the language system; to posit a hierarchical architecture that includes cross-modal convergence zones or hubs; and to provide a robust explanation for the semantic flexibility of concepts in general and abstract concepts in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altarriba, J., & Bauer, L. M. (2004). The distinctiveness of emotion concepts: A comparison between emotion, abstract, and concrete words. American Journal of Psychology, 117, 389–410.

    Article  PubMed  Google Scholar 

  • Anderson, J. R. (2005). Cognitive psychology and its implications. Worth.

    Google Scholar 

  • Andrews, M., Vigliocco, G., & Vinson, D. (2009). Integrating experiential and distributional data to learn semantic representations. Psychological Review, 116, 463–498.

    Article  PubMed  Google Scholar 

  • Andrews, M., Frank, S., & Vigliocco, G. (2014). Reconciling embodied and distributional accounts of meaning in language. Topics in Cognitive Science, 6, 359–370.

    Article  PubMed  Google Scholar 

  • Aristotle (1995). Aristotle: Selections (T. Irwin & G. Fine, Trans.). Hackett.

    Google Scholar 

  • Badre, D., & Wagner, A. D. (2005). Frontal lobe mechanisms that resolve proactive interference. Cerebral Cortex, 15, 2003–2012.

    Article  PubMed  Google Scholar 

  • Barca, L., Mazzuca, C., & Borghi, A. M. (2017). Pacifier overuse and conceptual relations of abstract and emotional concepts. Frontiers in Psychology, 8, Article 2014, 1–19.

    Google Scholar 

  • Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–609.

    Article  PubMed  Google Scholar 

  • Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.

    Article  PubMed  Google Scholar 

  • Barsalou, L. W. (2009). Simulation, situated conceptualization, and prediction. Philosophical Transactions of the Royal Society B, 363, 1281–1289.

    Article  Google Scholar 

  • Barsalou, L. W. (2016). On staying grounded and avoiding quixotic dead ends. Psychonomic Bulletin & Review, 23, 1122–1142.

    Article  Google Scholar 

  • Barsalou, L. W., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). Language and simulation in conceptual processing. In M. De Vega, A. M. Glenberg, & A. C. Graesser (Eds.), Symbols and embodiment: Debates on meaning and cognition (pp. 245–284). Oxford University Press.

    Chapter  Google Scholar 

  • Barsalou, L. W., Dutriaux, L., & Scheepers, C. (2018). Moving beyond the distinction between concrete and abstract concepts. Philosophical Transactions of the Royal Society B, 373, Article 20170144, 1–11.

    Google Scholar 

  • Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Science, 15, 527–536.

    Article  Google Scholar 

  • Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767–2796.

    Article  PubMed  PubMed Central  Google Scholar 

  • Binney, R. J., Embleton, K. V., Jeffries, E., Parker, G. J. M., & Lambon Ralph, M. A. (2010). The ventral and inferolateral aspects of the anterior temporal temporal lobe are crucial in semantic memory: Evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. Cerebral Cortex, 20, 2728–2738.

    Article  PubMed  Google Scholar 

  • Binney, R. J., Parker, G. J. M., & Lambon Ralph, M. A. (2012). Convergent connectivity and graded specialization in the rostral human temporal lobe as revealed by diffusion-weighted imaging probabilistic tractography. Journal of Cognitive Neuroscience, 24, 1998–2014.

    Article  PubMed  Google Scholar 

  • Bird, H., Franklin, S., & Howard, D. (2001). Age of acquisition and imageability ratings for a large set of words, including verbs and function words. Behavior Research Methods, Instruments, and Computers, 33, 73–79.

    Article  PubMed  Google Scholar 

  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.

    Google Scholar 

  • Bolognesi, M., & Steen, G. (2018). Abstract concepts: Structure, processing, and modeling. Topics in Cognitive Science, 10, 490–500.

    Article  PubMed  Google Scholar 

  • Bonner, M. F., Vesely, L., Price, C., Anderson, C., Richmond, L., Farag, C., Avants, B., & Grossman, M. (2009). Reversal of the concreteness effect in semantic dementia. Cognitive Neuropsychology, 26, 568–579.

    Article  PubMed  PubMed Central  Google Scholar 

  • Borghesani, V., & Piazza, M. (2017). The neuro-cognitive representations of symbols: The case of concrete words. Neuropsychologia, 105, 4–17.

    Article  PubMed  Google Scholar 

  • Borghi, A., & Binkofski, F. (2014). Words as social tools: An embodied view on abstract concepts. Springer.

    Book  Google Scholar 

  • Borghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., & Tummolini, L. (2017). The challenge of abstract concepts. Psychological Bulletin, 143(3), 263–292.

    Article  PubMed  Google Scholar 

  • Borghi, A. M., Barca, L., Binkofski, F., Castelfranchi, C., Pezzulo, G., & Tummolini, L. (2019). Words as social tools: Language, sociality and inner grounding in abstract concepts. Physics of Life Reviews, 29, 120–153.

    Article  PubMed  Google Scholar 

  • Borghi, A. M., & Cimatti, F. (2009). Words as tools and the problem of abstract words meanings. In N. Taatgen & H. van Rijn (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society (pp. 2304–2309). Cognitive Science Society.

    Google Scholar 

  • Borghi, A. M., Barca, L., Binkofski, F., & Tummolini, L. (2018). Varieties of abstract concepts: Development, use and representation in the brain [Theme Issue]. Philosophical Transactions of the Royal Society B, 373(1752).

    Google Scholar 

  • Boroditsky, L., & Ramscar, M. (2002). The roles of body and mind in abstract thought. Psychological Science, 13, 185–188.

    Article  PubMed  Google Scholar 

  • Bruni, E., Tran, N. K., & Baroni, M. (2014). Multimodal distributional semantics. Journal of Artificial Intelligence Research, 49, 1–47.

    Article  Google Scholar 

  • Casasanto, D., & Boroditsky, L. (2008). Time in mind: Using space to think about time. Cognition, 106, 579–593.

    Article  PubMed  Google Scholar 

  • Casasanto, D., & Lupyan, G. (2015). All concepts are ad hoc concepts. In E. Margolis & S. Laurence (Eds.), The conceptual mind: New directions in the study of concepts (pp. 543–566). MIT Press.

    Google Scholar 

  • Chatterjee, A. (2010). Disembodying Cognition. Language and Cognition, 2, 79–116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen, R., Kelter, S., & Woll, G. (1980). Analytical competence and language impairment in Aphasia. Brain and Language, 10, 331–347.

    Article  PubMed  Google Scholar 

  • Coltheart, M., Patterson, K., & Marshall, J. C. (Eds.). (1980). Deep dyslexia. Routledge & Kegan Paul.

    Google Scholar 

  • Connell, L. (2019). What have labels ever done for us? The linguistic shortcut in conceptual processing. Language, Cognition, and Neuroscience, 34(10), 1308–1318.

    Article  Google Scholar 

  • Connell, L., & Lynott, D. (2012). Strength of perceptual experience predicts word processing performance better than concreteness or imageability. Cognition, 125, 452–465.

    Article  PubMed  Google Scholar 

  • Connell, L., & Lynott, D. (2014). Principles of representation: Why you can’t represent the same concept twice. Topics in Cognitive Science, 6, 390–406.

    Article  PubMed  Google Scholar 

  • Crutch, S. J. (2006). Qualitatively different semantic representations for abstract and concrete words: Further evidence from the semantic reading errors of deep dyslexic patients. Neurocase, 12, 91–97.

    Article  PubMed  Google Scholar 

  • Crutch, S. J., & Jackson, E. C. (2011). Contrasting graded effects of semantic similarity and association across the concreteness spectrum. Quarterly Journal of Experimental Psychology, 64, 1388–1408.

    Article  Google Scholar 

  • Crutch, S. J., & Warrington, E. K. (2005). Abstract and concrete concepts have structurally different representational frameworks. Brain, 128, 615–627.

    Article  PubMed  Google Scholar 

  • Crutch, S. J., Troche, J., Reilly, J., & Ridgway, G. R. (2013). Abstract conceptual feature ratings: The role of emotion, magnitude, and other cognitive domains in the organization of abstract conceptual knowledge. Frontiers in human neuroscience, 7, Article 186, 1–14.

    Google Scholar 

  • Davidoff, J., & Roberson, D. (2004). Preserved thematic and impaired taxonomic categorization: A case study. Language and Cognitive Processes, 19(1), 137–174.

    Article  Google Scholar 

  • Davis, C. P., Altmann, G. T. M., & Yee, E. (2020) Situational systematicity: A role for schema in understanding the differences between abstract and concrete concepts. Cognitive Neuropsychology. Advance online publication.

    Google Scholar 

  • Davis, C. P., & Yee, E. (2018). Features, labels, space, and time: Factors supporting taxonomic relationships in the anterior temporal lobe and thematic relationships in the angular gyrus. Language, Cognition and Neuroscience, 34(10), 1347–1357.

    Article  Google Scholar 

  • Della Rosa, P. A., Catricalà, E., Canini, M., Vigliocco, G., & Cappa, S. F. (2018). The left inferior frontal gyrus: A neural crossroads between abstract and concrete knowledge. NeuroImage, 175(10), 449–459.

    Article  PubMed  Google Scholar 

  • Desai, R., Reilly, M., & van Dam, W. (2018). The multifaceted abstract brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(20170122), 1–19.

    Google Scholar 

  • Dove, G. (2009). Beyond perceptual symbols: A call for representational pluralism. Cognition, 110, 412–431.

    Article  PubMed  Google Scholar 

  • Dove, G. (2014). Thinking in words: Language as an embodied medium of thought. Topics in Cognitive Science, 6, 371–389. https://doi.org/10.1111/tops.12102

    Article  PubMed  Google Scholar 

  • Dove, G. (2016). Three symbol ungrounding problems: Abstract concepts and the future of embodied cognition. Psychonomic Bulletin & Review, 23(4), 1109–1121.

    Article  Google Scholar 

  • Dove, G. (2011). On the need for embodied and dis-embodied cognition. Frontiers in Cognition, 1, Article 242, 1–13.

    Google Scholar 

  • Dove, G. (2018). Language as a disruptive technology: Abstract concepts, embodiment, and the flexible mind. Philosophical Transactions of the Royal Society B, 373(1752), 20170135, 1–9.

    Google Scholar 

  • Dove, G. (2019). Language influences social cognition: Comment on “Words as social tools: Language, sociality and inner grounding in abstract concepts” by Anna M. Borghi et al. Physics of Life Reviews, 29, 169–171.

    Google Scholar 

  • Dreyer, F. R., Frey, D., Arana, S., von Saldern, S., Picht, T., Vajkoczy, P., & Pulvermüller, F. (2015). Is the motor system necessary for processing action and abstract emotion words? Evidence from focal brain lesions. Frontiers in Psychology, 6, Article 1661, 1–17.

    Google Scholar 

  • Dreyer, F. R., & Pulvermüller, F. (2018). Abstract semantics in the motor system?—An event-related fMRI study on passive reading of semantic word categories carrying abstract emotional and mental meaning. Cortex, 100, 52–70.

    Article  PubMed  Google Scholar 

  • Duñabeitia, J. A., Avilés, A., & Carreiras, M. (2008). NoA’s ark: Influence of the number of associates in visual word recognition. Psychonomic Bulletin & Review, 15, 1072–1077.

    Article  Google Scholar 

  • Duñabeitia, J. A., Avilés, A., Afonso, O., Scheepers, C., & Carreiras, M. (2009). Qualitative differences in the representation of abstract versus concrete words: Evidence from the visual-world paradigm. Cognition, 110, 284–292.

    Article  PubMed  Google Scholar 

  • Evans, G. A. L., Lambon Ralph, M. A., & Woollams, A. M. (2012). What’s in a word? A parametric study of semantic influences on visual word recognition. Psychonomic Bulletin & Review, 19, 325–331.

    Article  Google Scholar 

  • Fiebach, C. J., & Friederici, A. D. (2004). Processing concrete words: FMRI evidence against a specific right-hemisphere involvement. Neuropsychologia, 42(1), 62–70.

    Article  PubMed  Google Scholar 

  • Fingerhut, J., & Prinz, J. J. (2018). Grounding evaluative concepts. Philosophical Transactions of the Royal Society B, 373(1752), 20170142, 1–7.

    Google Scholar 

  • Firth, J. R. (1957). Papers in linguistics 1934–1951. Oxford University Press.

    Google Scholar 

  • Fischer, M. H., & Zwaan, R. A. (2008). Embodied language: A review of the motor system in language comprehension. Quarterly Journal of Experimental Psychology, 6, 825–850.

    Article  Google Scholar 

  • Franklin, S., Howard, D., & Patterson, K. (1995). Abstract word anomia. Cognitive Neuropsychology, 12, 549–566.

    Article  Google Scholar 

  • Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory–motor system in reason and language. Cognitive Neuropsychology, 22, 455–479.

    Article  PubMed  Google Scholar 

  • Giesbrecht, B., Gamblin, C., & Swaab, T. (2004). Separable effects of semantic priming and imageability on word processing in human cortex. Cerebral Cortex, 14, 521–529.

    Article  PubMed  Google Scholar 

  • Glenberg, A. M., & Gallese, V. (2012). Action-based language: A theory of language acquisition, comprehension, and production. Cortex, 48, 905–922.

    Article  PubMed  Google Scholar 

  • Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9, 558–565.

    Article  Google Scholar 

  • Glenberg, A. M., Sato, M., Cattaneo, L., Riggio, L., Palumbo, D., & Buccino, G. (2008). Processing abstract language modulates motor system activity. Quarterly Journal of Experimental Psychology, 61, 905–919.

    Article  Google Scholar 

  • Goetz, E. T., Sadoski, M., Stricker, A. G., White, T. S., & Wang, Z. (2007). The role of imagery in the production of written definitions. Reading Psychology, 28, 241–256.

    Article  Google Scholar 

  • Goodglass, H., Hyde, M. R., & Blumstein, S. (1969). Frequency, picturability and availability of nouns in aphasia. Cortex, 5, 104–119.

    Article  PubMed  Google Scholar 

  • Grady, J., & Ascoli, G. (2017). Sources and targets in primary metaphor theory: Looking back and thinking ahead. In B. Hampe (Ed.), Metaphor: Embodied cognition and discourse (pp. 27–45). Cambridge University Press.

    Chapter  Google Scholar 

  • Hargreaves, I. S., & Pexman, P. M. (2012). Does richness lose its luster? Effects of extensive practice on semantic richness in visual word recognition. Frontiers in Human Neuroscience, 6, Article 234, 1–11.

    Google Scholar 

  • Harpainter, M., Trumpp, N. M., & Kiefer, M. (2018). The semantic content of abstract concepts: A property listing study of 296 abstract words. Frontiers in Psychology, 9, Article 1748, 1–16.

    Google Scholar 

  • Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92, 67–99.

    Article  PubMed  Google Scholar 

  • Hoffman, P. (2016). The meaning of ‘life’ and other abstract words: Insights from neuropsychology. Journal of Neuropsychology, 10, 317–343.

    Article  PubMed  Google Scholar 

  • Hoffman, P., & Lambon Ralph, M. A. (2011). Reverse concreteness effects are not a typical feature of semantic dementia: Evidence for the Hub-and-Spoke model of conceptual representation. Cerebral Cortex, 21, 2103–2112.

    Article  PubMed  Google Scholar 

  • Hoffman, P., & Woollams, A. M. (2015). Opposing effects of semantic diversity in lexical and semantic relatedness decisions. Journal of Experimental Psychology: Human Perception and Performance, 41, 385–402.

    PubMed  Google Scholar 

  • Hoffman, P., Lambon Ralph, M. A., & Rogers, T. T. (2013). Semantic diversity: A measure of semantic ambiguity based on variability in the contextual usage of words. Behavior Research Methods, 45, 718–730.

    Article  PubMed  Google Scholar 

  • Hoffman, P., Binney, R. J., & Lambon Ralph, M. A. (2015). Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge. Cortex, 63, 250–266.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holcomb, P. J., Kounios, J., Anderson, J. E., & West, W. C. (1999). Dual-coding, context-availability, and concreteness effects in sentence comprehension: An electrophysiological investigation. Journal of Experimental Psychology: Learning, Memory and Cognition, 25, 721–742.

    Google Scholar 

  • Humphries, C., Binder, J. R., Medler, D. A., & Liebenthal, E. (2006). Syntactic and semantic modulation of neural activity during auditory sentence comprehension. Journal of Cognitive Neuroscience, 18, 665–679.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jefferies, E., Frankish, C., & Lambon Ralph, M. A. (2006). Lexical and semantic influences on item and order memory in immediate serial recognition: Evidence from a novel task. Quarterly Journal of Experimental Psychology, 59, 949–964.

    Article  Google Scholar 

  • Katz, R. B., & Goodglass, H. (1990). Deep dysphasia: Analysis of a rare form of repetition disorder. Brain and Language, 39(1), 153–185.

    Article  PubMed  Google Scholar 

  • Kemmerer, D. (2010). How words capture visual experience: The perspective from cognitive neuroscience. In B. Malt & P. Wolff (Eds.), Words and the mind: How words capture human experience (pp. 289–329). Oxford University Press.

    Google Scholar 

  • Kemmerer, D. (2019). Concepts in the brain: The view from cross-linguistic diversity. Oxford University Press.

    Book  Google Scholar 

  • Kiefer, M., & Barsalou, L. (2013). Grounding the human conceptual system in perception, action, and internal states. In W. Prinz, M. Beisert, & A. Herwig (Eds.), Action science: Foundations of an emerging discipline (pp. 381–407). MIT Press.

    Chapter  Google Scholar 

  • Kounios, J., & Holcomb, P. J. (1994). Concreteness effects in semantic processing: ERP evidence supporting dual-coding theory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(4), 804–823.

    PubMed  Google Scholar 

  • Kousta, S.-T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140, 14–34.

    Article  Google Scholar 

  • Kuhnke, P., Kiefer, M., & Hartwigsen, G. (2020). Task-dependent recruitment of modality-specific and multimodal regions during conceptual processing. Cerebral Cortex, 00, 1–22.

    Google Scholar 

  • Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the mind. University of Chicago Press.

    Book  Google Scholar 

  • Lakoff, G., & Johnson, M. (1980). Metaphors we live by. University of Chicago Press.

    Google Scholar 

  • Lambon Ralph, M. A., Sage, K., Jones, R. W., & Mayberry, E. J. (2010). Coherent concepts are computed in the anterior temporal lobes. Proceedings of the National Academy of Sciences, 107, 2717–2722.

    Article  Google Scholar 

  • Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211–240.

    Article  Google Scholar 

  • Lebois, L. A. M., Wilson-Mendenhall, C. D., & Barsalou, L. W. (2015). Putting everything in context. Cognitive Science, 39, 1987–1995.

    Article  PubMed  Google Scholar 

  • Lenci, A., Lebani, G. E., & Passaro, L. C. (2018). The emotions of abstract words: A distributional semantic analysis. Topics in Cognitive Science, 10, 550–572.

    Article  PubMed  Google Scholar 

  • Levy-Drori, S., & Henik, A. (2006). Concreteness and context availability in lexical decision tasks. The American Journal of Psychology, 119, 45–65.

    Article  PubMed  Google Scholar 

  • Loiselle, M., Rouleau, I., Nguyen, D. K., Dubeau, F., & Joubert, S. (2012). Comprehension of concrete and abstract words in patients with selective anterior temporal lobe resection and in patients with selective amygdalo-hippocampectomy. Neuropsychologia, 50, 630–639.

    Article  PubMed  Google Scholar 

  • Lourwerse, M. (2018). Knowing the meaning of a word by the linguistic and perceptual company it keeps. Topics in Cognitive Science, 10, 573–589.

    Article  Google Scholar 

  • Louwerse, M. (2011). Symbol interdependency in symbolic and embodied cognition. Topics in Cognitive Science, 3, 273–302.

    Article  PubMed  Google Scholar 

  • Louwerse, M. M., & Jeuniaux, P. (2010). The linguistic and embodied nature of conceptual processing. Cognition, 114, 96–104.

    Article  PubMed  Google Scholar 

  • Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior and Research Methods, Instruments, & Computers, 28, 203–208.

    Article  Google Scholar 

  • Lupyan, G. (2009). Extracommunicative functions of language: Verbal interference causes selective categorization impairments. Psychonomic Bulletin & Review, 16, 711–718.

    Article  Google Scholar 

  • Lupyan, G., & Mirman, D. (2013). Linking language and categorization: Evidence from aphasia. Cortex, 49(5), 1187–1194.

    Article  PubMed  Google Scholar 

  • Lupyan, G. (2012). Linguistically modulated perception and cognition: The label-feedback hypothesis. Frontiers in Psychology, 3, Article 54, 1–13.

    Google Scholar 

  • Lynott, D., & Connell, L. (2010). Embodied conceptual combination. Frontiers in Psychology, 1, Article 212, 1–14.

    Google Scholar 

  • Lynott, D., & Connell, L. (2009). Modality exclusivity norms for 423 object properties. Behavior Research Methods, 41, 558–564.

    Article  PubMed  Google Scholar 

  • Lynott, D., & Connell, L. (2013). Modality exclusivity norms for 400 nouns: The relationship between perceptual experience and surface word form. Behavior Research Methods, 45, 516–526.

    Article  PubMed  Google Scholar 

  • Machery, E. (2009). Doing without concepts. Oxford University Press.

    Book  Google Scholar 

  • Macoir, J. (2009). Is a plum a memory problem? Longitudinal study of the reversal of the concreteness effect in a patient with semantic dementia. Neuropsychologia, 47, 518–535.

    Article  PubMed  Google Scholar 

  • Mahon, B. Z. (2015). What is embodied about cognition? Language, Cognition and Neuroscience, 30, 420–429.

    Article  PubMed  Google Scholar 

  • Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology, 102, 59–70. https://doi.org/10.1016/j.jphysparis.2008.03.004

    Article  PubMed  Google Scholar 

  • Marinkovic, K., Dhond, R. P., Dale, A. M., Glessner, M., Carr, V., & Halgren, E. (2003). Spatiotemporal dynamics of modality-specific and supramodal word processing. Neuron, 38, 487–497.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin, N., & Saffran, E. M. (1992). A computational account of deep dysphasia: Evidence from a single case study. Brain and Language, 43, 240–274.

    Article  PubMed  Google Scholar 

  • Mason, R. A., & Just, M. A. (2016). Neural representations of physics concepts. Psychological Science, 27, 904–913.

    Article  PubMed  Google Scholar 

  • McCaffrey, J., & Machery, E. (2012). Philosophical issues about concepts. Wiley Interdisciplinary Reviews: Cognitive Science, 3, 265–279.

    PubMed  Google Scholar 

  • McRae, K., Nedjadrasul, D., Pau, R., Lo, B.P.-H., & King, L. (2018). Abstract concepts and pictures of real-world situations activate one another. Topics in Cognitive Science, 10, 518–532.

    Article  PubMed  Google Scholar 

  • Meteyard, L., Cuadrado, S. R., Bahrami, B., & Vigliocco, G. (2012). Coming of age: A review of embodiment and the neuroscience of semantics. Cortex, 48, 788–804.

    Article  PubMed  Google Scholar 

  • Montefinesse, M. (2019). Semantic representation of abstract and concrete words: A minireview of the neural evidence. Journal of Neurophysiology, 121, 1585–1587.

    Article  Google Scholar 

  • Moseley, R. L., Carota, F., Hauk, O., Mohr, B., & Pulvermüller, F. (2012). A role for the motor system in binding abstract emotional meaning. Cerebral Cortex, 22, 1634–1647.

    Article  PubMed  Google Scholar 

  • Moseley, R. L., Shtyrov, Y., Mohr, B., Lombardo, M. V., Baron-Cohen, S., & Pulvermüller, F. (2015). Lost for emotion words: What motor and limbic brain activity reveals about autism and semantic theory. Neuroimage, 104, 413–422.

    Article  PubMed  Google Scholar 

  • Myachykov, A., & Fischer, M. H. (2019). A hierarchical view of abstractness: Grounded, embodied, and situated aspects. Comment on “Words a social tools: Language, sociality, and inner grounding in abstract concepts” by Anna M. Borghi et al. Physics of Life Reviews, 29, 161–163.

    Google Scholar 

  • Newcombe, P. I., Campbell, C., Siakaluk, P. D., & Pexman, P. M. (2012). Effects of emotional and sensorimotor knowledge in semantic processing of concrete and abstract nouns. Frontiers in Human Neuroscience, 6, Article 275, 1–15.

    Google Scholar 

  • Noppeney, U., & Price, C. J. (2004). Retrieval of abstract semantics. NeuroImage, 22, 164–170.

    Article  PubMed  Google Scholar 

  • Paivio, A. (1986). Mental representations: A dual coding approach. Oxford University Press.

    Google Scholar 

  • Paivio, A. (1971). Imagery and verbal processes. Holt, Rinehart & Winston.

    Google Scholar 

  • Paivio, A. (2013). Dual coding theory, word abstractness, and emotion: A critical review of Kousta et al. (2011). Journal of Experimental Psychology: General, 142, 282–287.

    Google Scholar 

  • Papagno, A., Fogliata, E., Catricalà, C., & Miniussi, C. (2009). The lexical processing of abstract and concrete nouns. Brain Research, 1263, 78–86.

    Article  PubMed  Google Scholar 

  • Papagno, C., Martello, G., & Mattavelli, G. (2013). The neural correlates of abstract and concrete words: Evidence from brain-damaged patients. Brain Sciences, 3, 1229–1243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8, 976–987.

    Article  PubMed  Google Scholar 

  • Pecher, D. (2018). Curb your embodiment. Topics in Cognitive Science, 10, 501–517.

    Article  PubMed  Google Scholar 

  • Peelen, M. V., & Caramazza, A. (2012). Conceptual object representations in human anterior temporal cortex. Journal of Neuroscience, 32, 15728–15736.

    Article  PubMed  Google Scholar 

  • Pexman, P. M. (2012). Meaning-level influences on visual-word recognition. In J. S. Adelman (Ed.), Visual-word recognition: Meaning and context, individuals and development (Vol. 2, pp. 24–43). Psychology Press.

    Google Scholar 

  • Pexman, P. M., Hargreaves, I. S., Edwards, J. D., Henry, L. C., & Goodyear, B. G. (2007). Neural correlates of concreteness in semantic categorization. Journal of Cognitive Neuroscience, 19, 1407–1419.

    Article  PubMed  Google Scholar 

  • Pexman, P. M., Hargreaves, I. S., Siakaluk, P. D., Bodner, G. E., & Pope, J. (2008). There are many ways to be rich: Effects of three measures of semantic richness on visual word recognition. Psychonomic Bulletin & Review, 15, 161–167.

    Article  Google Scholar 

  • Plaut, D. C., & Shallice, T. (1993). Deep dyslexia: A case study in connectionist neuropsychology. Cognitive Neuropsychology, 10, 377–500.

    Article  Google Scholar 

  • Pobric, G., Jefferies, E., & Lambon Ralph, M. A. (2010). Amodal semantic representations depend on both left and right anterior temporal lobes: New rTMS evidence. Neuropsychologia, 48, 1336–1342.

    Article  PubMed  Google Scholar 

  • Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews: Neuroscience, 6, 576–582.

    Article  PubMed  Google Scholar 

  • Pulvermüller, F. (2013). Semantic embodiment, disembodiment or misembodiment? In search of meaning modules and neuron circuits. Brain & Language, 127, 86–103.

    Article  Google Scholar 

  • Recchia, G., & Jones, M. N. (2012). The semantic richness of abstract concepts. Frontiers in Human Neuroscience, 6, Article 315, 1–16.

    Google Scholar 

  • Rice, G. E., Hoffman, P., Binney, R. J., & Lambon Ralph, M. A. (2018). Concrete versus abstract forms of social concept: An fMRI comparison of knowledge about people versus social terms. Philosophical Transactions of the Royal Society B, 373(1752), 20170136, 1–16.

    Google Scholar 

  • Richardson, J. (1975). Concreteness and imageability. Quarterly Journal of Experimental Psychology, 27, 235–249.

    Article  Google Scholar 

  • Richardson, D. C., Spivey, M. J., Barsalou, L. W., & McRae, K. (2003). Spatial representations activated during real-time comprehension of verbs. Cognitive Science, 27, 767–780.

    Article  Google Scholar 

  • Riordan, B., & Jones, M. N. (2010). Redundancy in perceptual and linguistic experience: Comparing feature-based and distributional models of semantic information. Topics in Cognitive Science, 3, 303–345.

    Article  PubMed  Google Scholar 

  • Roberson, D., Davidoff, J., & Braisby, N. (1999). Similarrity and categorization: Neuropsychological evidence for a dissociation in in explicit categorization tasks. Cognition, 71, 1–42.

    Article  PubMed  Google Scholar 

  • Robson, H., Zahn, R., Keidel, J. L., Binney, R. J., Sage, K., & Lambon Ralph, M. A. (2014). The anterior temporal lobes support residual comprehension in Wernicke’s aphasia. Brain, 137, 931–943.

    Article  PubMed  PubMed Central  Google Scholar 

  • Romani, C., Mcalpine, S., & Martin, R. C. (2008). Concreteness effects in different tasks: Implications for models of short-term memory. Quarterly Journal of Experimental Psychology, 61, 292–323.

    Article  Google Scholar 

  • Sabsevitz, D., Medler, D., Seidenberg, M., & Binder, J. (2005). Modulation of the semantic system by word imageability. Neuroimage, 27, 188–200.

    Article  PubMed  Google Scholar 

  • Sakreida, K., Scorolli, C., Menz, M. M., Heim, S., Borghi, A. M., & Binkofski, F. (2013). Are abstract action words embodied? An fMRI investigation at the interface between language and motor cognition. Frontiers in Human Neuroscience, 7, 1–13.

    Article  Google Scholar 

  • Schwanenflugel, P. J., & Shoben, E. J. (1983). Differential context effects in the comprehension of abstract and concrete verbal materials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9, 82–102.

    Google Scholar 

  • Schwanenflugel, P. J., Harnishfeger, K. K., & Stowe, R. W. (1988). Context availability and lexical decisions for abstract and concrete words. Journal of Memory and Language, 27, 499–520.

    Article  Google Scholar 

  • Semenza, C., Bisiacchi, P. S., & Romani, L. (1992). Naming disorders and semantic representations. Journal of Psycholinguistic Research, 21, 349–364.

    Article  PubMed  Google Scholar 

  • Shallice, T., & Cooper, R. (2013). Is there a semantic system for abstract words? Frontiers in Human Neuroscience, 7, Article 175, 1–10.

    Google Scholar 

  • Sidhu, D. M., Kwan, R., Pexman, P. M., & Siakaluk, P. D. (2014). Effects of relative embodiment in lexical and semantic processing of verbs. Acta Psychologica, 149, 32–39.

    Article  PubMed  Google Scholar 

  • Simmons, K. W., & Barsalou, L. W. (2003). The similarity-in-topography principle: Reconcilingtheories of conceptual deficits. Cognitive Neuropsychology, 20, 451–486.

    Article  PubMed  Google Scholar 

  • Sirigu, A., Duhamel, J. R., & Poncet, M. (1991). The role of sensorimotor experience in object recognition: A case of multimodal agnosia. Brain, 114, 2555–2573.

    Article  PubMed  Google Scholar 

  • Skipper, L. M., & Olson, I. R. (2014). Semantic memory: Distinct neural representations for abstractness and valence. Brain and Language, 130, 1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Skipper-Kallal, L. M., Mirman, D., & Olson, I. R. (2015). Converging evidence from fMRI and aphasia that the left temporoparietal cortex has an essential role in representing abstract semantic knowledge. Cortex, 69, 104–120.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spitsyna, G., Warren, J. E., Scott, S. K., Turkheimer, F. E., & Wise, R. J. (2006). Converging language streams in the human temporal lobe. The Journal of Neuroscience, 26, 7328–7336.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steyvers, M. (2010). Combining feature norms and text data with topic models. Acta Psychologica, 133, 234–243.

    Article  PubMed  Google Scholar 

  • Striem-Amit, E., Wang, X., Bi, Y., & Caramazza, A. (2018). Neural representation of visual concepts in people born blind. Nature Communications, 9, 5250.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tager-Flusberg, H. (1992). Autistic children’s talk about psychological states: Deficits in the early acquisition of theory of mind. Child Development, 63, 161–172.

    Article  PubMed  Google Scholar 

  • Taikh, A., Hargreaves, I. S., Yap, M., & Pexman, P. M. (2015). Semantic classification of pictures and words. Quarterly Journal of Experimental Psychology, 68, 1502–1518.

    Article  Google Scholar 

  • Tillas, A. (2015). Language as grist to the mill of cognition. Cognitive Processes, 16, 219–243.

    Article  Google Scholar 

  • Tomasino, B., Fink, G. R., Sparing, R., Datotakis, M., & Weiss, P. H. (2008). Action verbs and the primary cortex: A comparative TMS study of silent frequency judgments, and motor imagery. Neuropsychologia, 46, 1915–1926.

    Article  PubMed  Google Scholar 

  • Tyler, L. K., Moss, H. E., Galpin, A., & Voice, J. K. (2002). Activating meaning in time: The role of imageability and form-class. Language and Cognitive Process, 17, 471–502.

    Article  Google Scholar 

  • Vandenberghe, R., Nobre, A. C., & Price, C. J. (2002). The response of left temporal cortex to sentences. Journal of Cognitive Neuroscience, 14, 550–560.

    Article  PubMed  Google Scholar 

  • Vigliocco, G., Vinson, D. P., Lewis, W., & Garrett, M. F. (2004). Representing the meaning ofobject and action words: The featural and unitary semantic space hypothesis. Cognitive Psychology, 48, 422–488.

    Article  PubMed  Google Scholar 

  • Vigliocco, G., Vinson, D. P., Druks, J., Barber, H., & Cappa, S. F. (2011). Nouns and verbs in the brain: A review of behavioural, electrophysiological, neurophysiological and imaging studies. Neuroscience & Biobehavioral Reviews, 35, 407–426.

    Article  Google Scholar 

  • Vigliocco, G., Kousta, S.-T., Della Rosa, P. A., Vinson, D. P., Tettamanti, M., Devlin, J. T., & Cappa, S. F. (2014). The neural representation of abstract words: The role of emotion. Cerebral Cortex, 24, 1767–1777.

    Article  PubMed  Google Scholar 

  • Visser, M., Jefferies, E., & Lambon Ralph, M. (2010). Semantic processing in the anterior temporal lobes: A meta-analysis of the functional neuroimaging literature. Journal of Cognitive Neuroscience, 22, 1083–1094.

    Article  PubMed  Google Scholar 

  • Visser, M., Jefferies, E., Embleton, K. V., & Lambon Ralph, M. A. (2012). Both the middle temporal gyrus and the ventral temporal area are crucial for multimodal semantic processing: Distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. Journal of Cognitive Neuroscience, 24, 1766–1778.

    Article  PubMed  Google Scholar 

  • Vygotsky, L. (2012). Thought and language (Revised and expanded.). MIT Press.

    Google Scholar 

  • Wang, J., Conder, J. A., Blitzer, D. N., & Shinkareva, S. V. (2010). Neural representation of abstract and concrete concepts: A meta-analysis of imaging studies. Human Brain Mapping, 31, 1459–1468.

    Article  PubMed  PubMed Central  Google Scholar 

  • Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairments. Brain, 107, 829–854.

    Article  PubMed  Google Scholar 

  • Wellsby, M., Siakaluk, P. D., Owen, W. J., & Pexman, P. M. (2011). Embodied semantic processing: The body–object interaction effect in a non-manual task. Language and Cognition, 3, 1–14.

    Article  Google Scholar 

  • Wiemer-Hastings, K., & Xu, X. (2005). Content differences for abstract and concrete concepts. Cognitive Science, 29, 719–736.

    Article  Google Scholar 

  • Wilson-Mendenhall, C. D., Simmons, W. K., Martin, A., & Barsalou, L. W. (2013). Contextual processing of abstract concepts reveals neural representations of non-linguistic semantic content. Journal of Cognitive Neuroscience, 25, 920–935.

    Article  PubMed  PubMed Central  Google Scholar 

  • Winkielman, P., Coulson, S., & Niedenthal, P. (2018). Dynamic grounding of emotion concepts. Philosophical Transactions of the Royal Society B, 373(20170127), 1–9.

    Google Scholar 

  • Yap, M. J., Pexman, P. M., Wellsby, M., Hargreaves, I. S., & Huff, M. (2012). An abundance of riches: Cross-task comparison of semantic richness effects in visual word recognition. Frontiers in Human Neuroscience, 6, 1–10.

    Article  Google Scholar 

  • Yee, E., Ahmed, S., & Thompson-Schill, S. L. (2012). Colorless green ideas (can) prime furiously. Psychological Science, 23, 364–369.

    Article  PubMed  Google Scholar 

  • Yi, H. A., Moore, P., & Grossman, M. (2007). Reversal of the concreteness effect for verbs in semantic dementia. Neuropsychology, 21(1), 9–19.

    Article  PubMed  Google Scholar 

  • Zdrazilova, L., & Pexman, P. M. (2013). Grasping the invisible: Semantic processing of abstract words. Psychonomic Bulletin & Review, 20, 1312–1318.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Dove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dove, G. (2021). The Challenges of Abstract Concepts. In: Robinson, M.D., Thomas, L.E. (eds) Handbook of Embodied Psychology. Springer, Cham. https://doi.org/10.1007/978-3-030-78471-3_8

Download citation

Publish with us

Policies and ethics