Psychonomic Bulletin & Review

, Volume 21, Issue 4, pp 961–968 | Cite as

The effect of iconicity of visual displays on statistical reasoning: evidence in favor of the null hypothesis

  • Miroslav Sirota
  • Lenka Kostovičová
  • Marie Juanchich
Brief Report

Abstract

Knowing which properties of visual displays facilitate statistical reasoning bears practical and theoretical implications. Therefore, we studied the effect of one property of visual diplays – iconicity (i.e., the resemblance of a visual sign to its referent) – on Bayesian reasoning. Two main accounts of statistical reasoning predict different effect of iconicity on Bayesian reasoning. The ecological-rationality account predicts a positive iconicity effect, because more highly iconic signs resemble more individuated objects, which tap better into an evolutionary-designed frequency-coding mechanism that, in turn, facilitates Bayesian reasoning. The nested-sets account predicts a null iconicity effect, because iconicity does not affect the salience of a nested-sets structure—the factor facilitating Bayesian reasoning processed by a general reasoning mechanism. In two well-powered experiments (N = 577), we found no support for a positive iconicity effect across different iconicity levels that were manipulated in different visual displays (meta-analytical overall effect: log OR = −0.13, 95 % CI [−0.53, 0.28]). A Bayes factor analysis provided strong evidence in favor of the null hypothesis—the null iconicity effect. Thus, these findings corroborate the nested-sets rather than the ecological-rationality account of statistical reasoning.

Keywords

Iconicity Bayesian reasoning Visual displays Nested sets Bayes factor 

References

  1. Albert, J. (2009). Bayesian computations with R (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  2. Barbey, A. K., & Sloman, S. A. (2007). Base-rate respect: From ecological rationality to dual processes. Behavioral and Brain Sciences, 30, 241–297. doi:10.1017/S0140525X07001653 PubMedGoogle Scholar
  3. Brase, G. L. (2009). Pictorial representations in statistical reasoning. Applied Cognitive Psychology, 23, 369–381. doi:10.1002/acp.1460 CrossRefGoogle Scholar
  4. Carpenter, P. A., & Shah, P. (1998). A model of the perceptual and conceptual processes in graph comprehension. Journal of Experimental Psychology: Applied, 4, 75–100. doi:10.1037/1076-898X.4.2.75 Google Scholar
  5. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Erlbaum.Google Scholar
  6. Cosmides, L., & Tooby, J. (1996). Are humans good intuitive statisticians after all? Rethinking some conclusions from the literature on judgment under uncertainty. Cognition, 58, 1–73. doi:10.1016/0010-0277(95)00664-8 CrossRefGoogle Scholar
  7. Cumming, G. (2012). Understanding the new statistics: effect sizes, confidence intervals, and meta-analysis. New York: Routledge.Google Scholar
  8. Gaissmaier, W., Wegwarth, O., Skopec, D., Muller, A. S., Broschinski, S., & Politi, M. C. (2012). Numbers can be worth a thousand pictures: Individual differences in understanding graphical and numerical representations of health-related information. Health Psychology, 31, 286–296. doi:10.1037/a0024850 PubMedCrossRefGoogle Scholar
  9. Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological Review, 102, 684–704. doi:10.1037/0033-295X.102.4.684 CrossRefGoogle Scholar
  10. Girotto, V., & Gonzalez, M. (2001). Solving probabilistic and statistical problems: A matter of information structure and question form. Cognition, 78, 247–276. doi:10.1016/S0010-0277(00)00133-5 PubMedCrossRefGoogle Scholar
  11. Higgins, J. P. T., & Green, S. (Eds.). (2008). Cochrane handbook for systematic reviews of interventions. Chichester: Wiley-Blackwell.Google Scholar
  12. Lesage, E., Navarrete, G., & De Neys, W. (2013). Evolutionary modules and Bayesian facilitation: The role of general cognitive resources. Thinking and Reasoning, 19, 27–53. doi:10.1080/13546783.2012.713177 CrossRefGoogle Scholar
  13. Mani, K., & Johnson-Laird, P. N. (1982). The mental representation of spatial descriptions. Memory & Cognition, 10, 181–187. doi:10.3758/BF03209220 CrossRefGoogle Scholar
  14. Morris, C., & Hamilton, D. J. (1965). Aesthetics, signs, and icons. Philosophy and Phenomenological Research, 25, 356–364.CrossRefGoogle Scholar
  15. Oppenheimer, D. M., Meyvis, T., & Davidenko, N. (2009). Instructional manipulation checks: Detecting satisficing to increase statistical power. Journal of Experimental Social Psychology, 45, 867–872. doi:10.1016/j.jesp.2009.03.009 CrossRefGoogle Scholar
  16. Over, D. (2007). The logic of natural sampling. Behavioral and Brain Sciences, 30, 277–277. doi:10.1017/S0140525X07001859 CrossRefGoogle Scholar
  17. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225–237. doi:10.3758/PBR.16.2.225 CrossRefGoogle Scholar
  18. Sedlmeier, P. (1999). Improving statistical reasoning: Theoretical models and practical implications. Mahwah: Erlbaum.Google Scholar
  19. Sirota, M., & Juanchich, M. (2011). Role of numeracy and cognitive reflection in Bayesian reasoning with natural frequencies. Studia Psychologica, 53, 151–161.Google Scholar
  20. Sirota, M., & Juanchich, M. (2012). Risk communication on shaky ground. Science, 338, 1286–1287. doi:10.1126/science.338.6112.1286 PubMedCrossRefGoogle Scholar
  21. Sirota, M., Juanchich, M., & Hagmayer, Y. (2013). Ecological rationality or nested sets? Individual differences in cognitive processing predict Bayesian reasoning. Psychonomic Bulletin & Review. Advance online publication.. doi:10.3758/s13423-013-0464-6 Google Scholar
  22. Sloman, S. A., Over, D., Slovak, L., & Stibel, J. M. (2003). Frequency illusions and other fallacies. Organizational Behavior and Human Decision Processes, 91, 296–309. doi:10.1016/S0749-5978(03)00021-9 CrossRefGoogle Scholar
  23. Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 90, 293–315. doi:10.1037/0033-295X.90.4.293 CrossRefGoogle Scholar
  24. Vallée-Tourangeau, F., & Krüsi Penney, A. (2005). The impact of external representation in a rule discovery task. European Journal of Cognitive Psychology, 17, 820–834. doi:10.1080/09541440440000249 CrossRefGoogle Scholar
  25. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36, 1–48.Google Scholar
  26. Yamagishi, K. (2003). Facilitating normative judgments of conditional probability: Frequency or nested sets? Experimental Psychology, 50, 97–106. doi:10.1027/1618-3169.50.2.97 PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  • Miroslav Sirota
    • 1
  • Lenka Kostovičová
    • 2
  • Marie Juanchich
    • 3
  1. 1.Medical Decision Making and Informatics Research Group, School of MedicineKing’s College LondonLondonUK
  2. 2.Institute of Experimental PsychologySlovak Academy of SciencesBratislavaSlovakia
  3. 3.Kingston Business SchoolKingston UniversityLondonUK

Personalised recommendations