Attention, Perception, & Psychophysics

, Volume 76, Issue 3, pp 805–813 | Cite as

Safety in numbers: Target prevalence affects the detection of vehicles during simulated driving

  • Vanessa Beanland
  • Michael G. Lenné
  • Geoffrey Underwood
Article

Abstract

The “low-prevalence effect” refers to the fact that observers often fail to detect rare targets (<5 % prevalence) during visual search tasks. Previous research has demonstrated robust prevalence effects in real-world tasks that employ static images, such as airport luggage screening. No published research has examined prevalence effects in dynamic tasks, such as driving. We conducted a driving simulator experiment to investigate whether target prevalence effects influence the detection of other vehicles while driving. The target vehicles were motorcycles and buses, with prevalence being manipulated both within and between subjects: Half of the subjects experienced a high prevalence of motorcycles with a low prevalence of buses, and half experienced a high prevalence of buses with a low prevalence of motorcycles. Consistent with our hypotheses, drivers detected high-prevalence targets faster than low-prevalence targets for both vehicle types. Overall, our results support the notion that increasing the prevalence of visual search targets makes them more salient, and consequently easier to detect.

Keywords

Visual search Attention Perception Driving 

References

  1. Association des Constructeurs Européens de Motocycles (ACEM). (2009). In-depth investigations of accidents involving powered two-wheelers (MAIDS): Final report 2.0. Brussels, Belgium: ACEM.Google Scholar
  2. Australian Bureau of Statistics. (2013). 9208.0—Survey of Motor Vehicle Use, Australia, 12 months ended 30 June 2012. Canberra, Australia: Australian Bureau of Statistics.Google Scholar
  3. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 437–443. doi:10.1016/j.tics.2012.06.010 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Beanland, V., Fitzharris, M., Young, K. L., & Lenné, M. G. (2013). Driver inattention and driver distraction in serious casualty crashes: Data from the Australian National Crash In-Depth Study. Accident Analysis and Prevention, 54, 99–107. doi:10.1016/j.aap.2012.12.043 PubMedCrossRefGoogle Scholar
  5. Brooks, A. M., Chiang, D. P., Smith, T. A., Zellner, J. W., Peters, J. P., & Compagne, J. (2005, June). A driving simulator methodology for evaluating enhanced motorcycle conspicuity. Paper presented at the 19th International Technical Conference on the Enhanced Safety of Vehicles, Washington, DC.Google Scholar
  6. Cavallo, V., & Pinto, M. (2012). Are car daytime running lights detrimental to motorcycle conspicuity? Accident Analysis and Prevention, 49, 78–85. doi:10.1016/j.aap.2011.09.013 PubMedCrossRefGoogle Scholar
  7. Crundall, D., Crundall, E., Clarke, D., & Shahar, A. (2012). Why do car drivers fail to give way to motorcycles at t-junctions? Accident Analysis and Prevention, 44, 88–96. doi:10.1016/j.aap.2010.10.017 PubMedCrossRefGoogle Scholar
  8. Crundall, D., Humphrey, K., & Clarke, D. (2008). Perception and appraisal of approaching motorcycles at junctions. Transportation Research Part F, 11, 159–167. doi:10.1016/j.trf.2007.09.003 CrossRefGoogle Scholar
  9. Evans, K. K., Evered, A., Tambouret, R. H., Wilbur, D. C., & Wolfe, J. M. (2011). Prevalence of abnormalities influences cytologists’ error rates in screening for cervical cancer. Archives of Pathology and Laboratory Medicine, 135, 1557–1560. doi:10.5858/arpa.2010-0739-OA PubMedCentralPubMedCrossRefGoogle Scholar
  10. Fisher, D. L., Pollatsek, A. P., & Pradhan, A. (2006). Can novice drivers be trained to scan for information that will reduce their likelihood of a crash? Injury Prevention, 12(Suppl. 1), i25–i29. doi:10.1136/ip.2006.012021 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Fleck, M. S., & Mitroff, S. R. (2007). Rare targets are rarely missed in correctable search. Psychological Science, 18, 943–947. doi:10.1111/j.1467-9280.2007.02006.x PubMedCrossRefGoogle Scholar
  12. Humphrey, K., & Underwood, G. (2009). Domain knowledge moderates the influence of visual saliency in scene recognition. British Journal of Psychology, 100, 377–398. doi:10.1348/000712608x344780 PubMedCrossRefGoogle Scholar
  13. Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40, 1489–1506. doi:10.1016/S0042-6989(99)00163-7 PubMedCrossRefGoogle Scholar
  14. Magazzù, D., Comelli, M., & Marinoni, A. (2006). Are car drivers holding a motorcycle licence less responsible for motorcycle—Car crash occurrence? A non-parametric approach. Accident Analysis & Prevention, 38, 365–370. doi:10.1016/j.aap.2005.10.007 CrossRefGoogle Scholar
  15. Mitsopoulos-Rubens, E., & Lenné, M. G. (2012). Issues in motorcycle sensory and cognitive conspicuity: The impact of motorcycle low-beam headlights and riding experience on drivers’ decisions to turn across the path of a motorcycle. Accident Analysis and Prevention, 49, 86–95. doi:10.1016/j.aap.2012.05.028 PubMedCrossRefGoogle Scholar
  16. Rich, A. N., Kunar, M. A., Van Wert, M. J., Hidalgo-Sotelo, B., Horowitz, T. S., & Wolfe, J. M. (2008). Why do we miss rare targets? Exploring the boundaries of the low prevalence effect. Journal of Vision, 8(15):15. doi:10.1167/8.15.15 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Rößger, L., Hagen, K., Krzywinski, J., & Schlag, B. (2012). Recognisability of different configurations of front lights on motorcycles. Accident Analysis and Prevention, 44, 82–87. doi:10.1016/j.aap.2010.12.004 PubMedCrossRefGoogle Scholar
  18. Schwark, J. D., MacDonald, J., Sandry, J., & Dolgov, I. (2013). Prevalence-based decisions undermine visual search. Visual Cognition, 21, 541–568. doi:10.1080/13506285.2013.811135 CrossRefGoogle Scholar
  19. Schwark, J., Sandry, J., MacDonald, J., & Dolgov, I. (2012). False feedback increases detection of low-prevalence targets in visual search. Attention, Perception, & Psychophysics, 74, 1583–1589. doi:10.3758/s13414-012-0354-4 CrossRefGoogle Scholar
  20. Smither, J. A., & Torrez, L. I. (2010). Motorcycle conspicuity: Effects of age and daytime running lights. Human Factors, 52, 355–369. doi:10.1177/0018720810374613 PubMedCrossRefGoogle Scholar
  21. Summala, H., Pasanen, E., Räsänen, M., & Sievänen, J. (1996). Bicycle accident and drivers’ visual search at left and right turns. Accident Analysis and Prevention, 28, 147–153. doi:10.1016/0001-4575(95)00041-0 PubMedCrossRefGoogle Scholar
  22. Tatler, B. W., Hayhoe, M. M., Land, M. F., & Ballard, D. H. (2011). Eye guidance in natural vision: Reinterpreting salience. Journal of Vision, 11(5):5. doi:10.1167/11.5.5 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. Psychological Review, 113, 766–786. doi:10.1037/0033-295x.113.4.766 PubMedCrossRefGoogle Scholar
  24. Underwood, G., Humphrey, K., & Van Loon, E. (2011). Decisions about objects in real-world scenes are influenced by visual saliency before and during their inspection. Vision Research, 51, 2031–2038. doi:10.1016/j.visres.2011.07.020 PubMedCrossRefGoogle Scholar
  25. Van Elslande, P., Fournier, J.-Y., & Jaffard, M. (2012). In-depth analysis of road crashes involving powered two-wheelers vehicles: Typical human functional failures and conditions of their production. Work, 41, 5871–5873. doi:10.3233/WOR-2012-0978-5871 PubMedGoogle Scholar
  26. Van Wert, M. J., Horowitz, T. S., & Wolfe, J. M. (2009). Even in correctable search, some types of rare targets are frequently missed. Attention, Perception, & Psychophysics, 71, 541–553. doi:10.3758/app. 71.3.541CrossRefGoogle Scholar
  27. Wolfe, J. M. (2007). Guided search 4.0: Current progress within a model of visual search. In W. D. Gray (Ed.), Integrated models of cognitive systems (pp. 99–119). New York, NY: Oxford University Press.CrossRefGoogle Scholar
  28. Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Rare items often missed in visual searches. Nature, 435, 439–440. doi:10.1038/435439a PubMedCrossRefGoogle Scholar
  29. Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology: General, 136, 623–638. doi:10.1037/0096-3445.136.4.623 CrossRefGoogle Scholar
  30. Wolfe, J. M., & Van Wert, M. J. (2010). Varying target prevalence reveals two dissociable decision criteria in visual search. Current Biology, 20, 121–124. doi:10.1016/j.cub.2009.11.066 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  • Vanessa Beanland
    • 1
    • 2
  • Michael G. Lenné
    • 1
  • Geoffrey Underwood
    • 3
  1. 1.Monash University Accident Research Centre, Monash Injury Research InstituteMonash UniversityClaytonAustralia
  2. 2.Research School of PsychologyAustralian National UniversityCanberraAustralia
  3. 3.School of PsychologyUniversity of NottinghamNottinghamUK

Personalised recommendations