Skip to main content
Log in

Buckling-based measurements of mechanical moduli of thin films

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The buckling-based measurement of mechanical properties of material is reviewed here, which is a very useful technique for the characterization of thin films, nano- or molecular-scale materials, etc. This method is shown to be useful to measure elastic moduli of various thin films such as polymers, polyelectrolyte multilayers (PEM), single-wall carbon nanotubes (SWNT) and millimeter-thick polymer network substrates. Further, it is also shown that the mechanical properties of various organic electronic materials, which may find wide applications in flexible and/or stretchable electronic devices, can be measured by the buckling method. Due to its fast, simple nature, the method can be extended to many other materials, especially to materials existing in thin film form only. The method would be a valuable, complementary technique in mechanical characterization of materials to be added to existing methods such as tensile testing, nano-indentation, and other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Trolier-McKinstry, and P. Muralt, J. Electroceramics. 12, 7 (2004).

    Article  CAS  Google Scholar 

  2. S. H. Yi, H. C. Cho, and S. O. Han, Electron. Mater. Lett. 5, 55 (2009).

    Article  CAS  Google Scholar 

  3. Y. Zhao, J. Wang, and G. Mao, Optics Lett. 30, 1885 (2005).

    Article  Google Scholar 

  4. P. Muralt, J. Micromech. Microeng. 10, 136 (2000).

    Article  CAS  Google Scholar 

  5. P. Mitra, A. P. Chatterjee, and H. S. Maiti, Mater. Lett. 35, 33 (1998).

    Article  CAS  Google Scholar 

  6. H.-S. Hong and C.-O. Park, Electron. Mater. Lett. 1, 11 (2005).

    CAS  Google Scholar 

  7. E. M. Kim, S. H. Min, and J. S. Jung, Electron. Mater. Lett. 3, 217 (2007).

    CAS  Google Scholar 

  8. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).

    Article  CAS  Google Scholar 

  9. D. A. Hardwick, Thin Solid Films 154, 109 (1987).

    Article  CAS  Google Scholar 

  10. M. Alcoutlabi and G. B. McKenna, J. Phys.:Condens. Matter 17, R461 (2005).

    Article  CAS  Google Scholar 

  11. S. Mahajan, Electron. Mater. Lett. 2, 59 (2006).

    CAS  Google Scholar 

  12. S. W. Chung, S. Makhar, H. Ackler, and S. B. Park, Electron. Mater. Lett. 2, 175 (2006).

    CAS  Google Scholar 

  13. J.-H. Zhao, M. Kiene, C. Hu, and P. S. Ho, Appl. Phys. Lett. 77, 2843 (2000).

    Article  CAS  Google Scholar 

  14. H. Y. Lee, S. J. Suh, S. R. Kim, S. Y. Park, and Y. C. Joo, Electron. Mater. Lett. 2, 175 (2009).

    Google Scholar 

  15. L. Sun and J. R. Dutcher, L. Giovannini and F. Nizzoli, J. R. Stevens, and J. L. Ord, J. Appl. Phys. 75, 7482 (1994).

    Article  CAS  Google Scholar 

  16. R. Hartschuh, Y. Ding, J. H. Roh, A. Kisliuk, A. P. Sokolov, C. L. Soles, R. L. Jones, T. J. Hu, W. L. Wu, and A. P. Mahorowala, J. Polym. Sci., Part B: Polym. Phys. 42, 1106 (2004)

    Article  CAS  Google Scholar 

  17. J. A. Forrest, K. Dalnoki-Veress, and J. R. Dutcher, Phys. Rev. E 58, 6109 (1998).

    Article  CAS  Google Scholar 

  18. S. A. Syed Asif, K. J. Wahl, and R. J. Colton, Rev. Sci. Instrum. 70, 2408 (1999).

    Article  Google Scholar 

  19. R. Saha and W. D. Nix, Acta Mater. 50, 23 (2002).

    Article  CAS  Google Scholar 

  20. A. A. Volinsky, J. B. Vella, and W. W. Gerberich, Thin Solid Films 429, 201 (2003).

    Article  CAS  Google Scholar 

  21. . J. Y. Kim, Y. H. Lee, J. I. Jang, and D. I. Kwon, Electron. Mater. Lett. 2, 139 (2006).

    CAS  Google Scholar 

  22. C. Escoffier, J. de Rigal, A. Rochefort, R. Vasselet, J.-L. Leveque, and P. G. Agache, J. Inves. Derma. 93, 353 (1989).

    Article  CAS  Google Scholar 

  23. D. Gazit, Phy. Rev. B 79, 113411 (2009).

    Article  Google Scholar 

  24. S. Srivastava and J. K. Basu, Phy. Rev. E 79, 041603 (2009).

    Article  CAS  Google Scholar 

  25. E. Cerda, and L. Mahadevan, Phy. Rev. Lett. 90, 074302 (2003).

    Article  CAS  Google Scholar 

  26. J. Genzer, and J. Groenewold, Soft Matt. 2, 310 (2006).

    Article  CAS  Google Scholar 

  27. A. L. Volynskii, S. Bazhenov, O. V. Lebedeva, and N. F. Bakeev, J. Mater. Sci. 35, 547 (2000).

    Article  CAS  Google Scholar 

  28. J. Groenewold, Physica A, 298, 32 (2001).

    Article  Google Scholar 

  29. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, Nature 393, 146 (1998).

    Article  CAS  Google Scholar 

  30. D.-Y. Khang, J. A. Rogers and H. H. Lee, Adv. Funct. Mater. 19, 1526 (2009).

    Article  CAS  Google Scholar 

  31. C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. Vanlandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, Nat. Mater. 3, 545 (2004).

    Article  CAS  Google Scholar 

  32. C. M. Stafford, B. D. Vogt, C. Harrison, D. Julthongpiput, and R. Huang, Macromolecules 39, 5095 (2006).

    Article  CAS  Google Scholar 

  33. A. J. Nolte, M. F. Rubner, and R and E. Cohen, Macromolecules 38, 5367 (2005).

    Article  CAS  Google Scholar 

  34. S. S. Shiratori and M. F. Rubnet, Macromolecules 33, 4213 (2000).

    Article  CAS  Google Scholar 

  35. A. J. Nolte, R. E. Cohen, and M. F. Rubner, Macromolecules 39, 4841 (2006).

    Article  CAS  Google Scholar 

  36. H. Hillborg, N. Tomczak, A. Olah, H. Schonherr, and G. J. Vancso, Langmuir 20, 785 (2004).

    Article  CAS  Google Scholar 

  37. A. Olah, H. Hillborg, G. J. Vancso, Appl. Surf. Sci. 239, 410 (2005).

    Article  CAS  Google Scholar 

  38. H. Huang, J. Y. Chung, A. J. Nolte, and C. M. Stafford, Chem. Mater. 19, 6555 (2007).

    Article  CAS  Google Scholar 

  39. E. A. Wilder, S. Guo, S. L. Gibson, M. J. Fasolka and C. M. Stafford, Macromolecules 39, 4138 (2006).

    Article  CAS  Google Scholar 

  40. J. Y. Chung, T. Q. Chastek, M. J. Fasolka, H. W. Ro, and C. M. Stafford, ACS Nano 3, 844 (2009).

    Article  CAS  Google Scholar 

  41. D.-Y. Khang, J. Xiao, C. Kocabas, S. MacLaren, T. Banks, H. Jiang, Y. Y. Huang, and J. A. Rogers, Nano Lett. 8, 124 (2008).

    Article  CAS  Google Scholar 

  42. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  43. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, Science 312, 1191 (2006).

    Article  CAS  Google Scholar 

  44. M. J. Schultz, X. Zhang, S. Unarunotai, D.-Y. Khang, Q. Cao, C. Wang, C. Lei, S. MacLaren, J. A. N. T. Soares, I. Petrov, J. S. Moore, and J. A. Rogers, PNAS 105, 7353 (2008).

    Article  CAS  Google Scholar 

  45. D. H. Tahk, H. H. Lee, and D.-Y. Khang, Macromolecules 42, 7079 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dahl-Young Khang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahm, SW., Hwang, HS., Kim, D. et al. Buckling-based measurements of mechanical moduli of thin films. Electron. Mater. Lett. 5, 157–168 (2009). https://doi.org/10.3365/eml.2009.12.157

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.3365/eml.2009.12.157

Keywords

Navigation