Skip to main content
Log in

Effect of the deposition temperature and a hydrogen post-annealing treatment on the structural, electrical, and optical properties of Ga-doped ZnO films

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The combined effects of the deposition temperature and a hydrogen post-annealing treatment on the structural, electrical, and optical properties of Ga-doped ZnO (GZO) films were investigated as a potential substitute for indium tin oxide transparent conductive oxide (TCO). On the as-deposited films, increasing the deposition temperature initially improved the electrical properties, but a deposition temperature in excess of 423 K resulted in the deterioration of the electrical properties due to the development of ZnGa2O4 and Ga2O3 phases originating from the excessive amount of the Ga dopant. While a post-annealing treatment of the GZO films in hydrogen leveled off the overall properties, improvement in the electrical property was observed only in films initially deposited at room temperature. This is attributed to the excessively high concentration of the dopant Ga released from ZnGa2O4 and Ga2O3 during the post-annealing treatment. It is therefore suggested that in the preparation of TCOs based on GZO films, the concentration of the dopant Ga should be carefully controlled to obtain the optimal properties by suppressing the formation of ZnGa2O4 and Ga2O3 that occurs due to the presence of excess Ga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. L. Chopra, S. Major, and D. K. Pandya,Thin Solid Films 102, 1 (1983).

    Article  CAS  Google Scholar 

  2. I. Hamburg and C. G. Granquist,J. Appl. Phys. 60, R123 (1986).

    Article  Google Scholar 

  3. V. Vaithianathan, S. S. Kim, and B. T. Lee,Electron. Mater. Lett. 1, 121 (2005).

    CAS  Google Scholar 

  4. K. H. Kim, K. C. Park, and D. Y. Ma,J. Appl. Phys. 81, 7764 (1997).

    Article  CAS  Google Scholar 

  5. B. Y. Oh, M. C. Jeong, D. S. Kim, W. Lee, and J. M. Myoung,J. Cryst. Growth 281, 475 (2005).

    Article  CAS  Google Scholar 

  6. J. H. Kim, B. D. Ahn, C. H. Lee, K. A. Jeon, H. S. Kang, and S. Y. LeeJ. Appl. Phys. 100, 113515 (2006).

    Article  Google Scholar 

  7. H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. LookAppl. Phys. Lett. 77, 3761 (2000).

    Article  CAS  Google Scholar 

  8. A. de Souza Goncalves, S. A. M. de Lima, M. R. Davolos, S. G. Antoñio, and C. de Oliveira Paiva-Santos,J. Solid State Chem. 179, 1330 (2006).

    Article  Google Scholar 

  9. R. A. Asmar, S. Juillaguet, M. Ramonda, A. Giani, P. Combette, A. Khoury, and A. Foucaran,J. Cryst. Growth 275, 512 (2005).

    Article  Google Scholar 

  10. Q. B. Ma, Z. Z. Ye, H. P. He, L. P. Zhu, J. Y. Huang, Y. Z. Zhang, and B. H. Zhao,Scripta Mater. 58, 21 (2008).

    Article  CAS  Google Scholar 

  11. B. H. Choi, H. B. Im, J. S. Song, and K. H. Yoon,Thin Solid Films 193, 712 (1990).

    Article  Google Scholar 

  12. V. Gupta and A. Mansingh,J. Appl. Phys. 80, 1063 (1996).

    Article  CAS  Google Scholar 

  13. G. B. Palmer, and K. R. Poeppelmeier,Solid State Sci. 4, 317 (2002).

    Article  CAS  Google Scholar 

  14. E. M. Bachari, G. Baud, and S. Ben Amor,Thin Solid Films 348, 165 (1999).

    Article  CAS  Google Scholar 

  15. J. A. Thornton,Ann. Rev. Mater. Sci. 7, 239 (1977).

    Article  CAS  Google Scholar 

  16. X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, and H. Ma,Appl. Surf. Sci. 239, 222 (2004).

    Article  Google Scholar 

  17. X. Yua, J. Maa, F. Jia, Y. Wanga, X. Zhanga, C. Chengb, and H. Maa,J. Cryst. Growth 274, 474 (2005).

    Article  Google Scholar 

  18. J. O'Dowd,Sol. Energy Mater. 16, 383 (1987).

    Article  Google Scholar 

  19. H. Shade and Z. Smith,Appl. Opt. 24, 3221 (1985).

    Article  Google Scholar 

  20. N. D. Arora, J. R. Hauser, and D. J. Roulston,IEEE Trans. Electron Devices ED-29, 292 (1982).

    Article  CAS  Google Scholar 

  21. B. H. Choi, H. B. Im, J. S. Song, and K. H. Yoon,Thin Solid Films 193, 712 (1990).

    Article  Google Scholar 

  22. I. Hamberg, C. G. Granqvist, K.-F. Berggren, B. E. Sernelius, and L. Engstorm,Phys. Rev. B 30, 3240 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Min Myoung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, MJ., Lee, TI., Lim, J. et al. Effect of the deposition temperature and a hydrogen post-annealing treatment on the structural, electrical, and optical properties of Ga-doped ZnO films. Electron. Mater. Lett. 5, 127–133 (2009). https://doi.org/10.3365/eml.2009.09.127

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.3365/eml.2009.09.127

Keywords

PACS Codes

Navigation