Skip to main content
Log in

Effect of doping concentration and annealing temperature on nitrogen-doped ZnO thin films: an investigation through spectroscopic techniques

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Undoped and nitrogen-doped ZnO (NZO) thin films were deposited by sol–gel spin-coating technique on glass substrates. The thin film preparation was accomplished using zinc acetate dihydrate, monoethanolamine and 2-methoxyethanol as the precursors. Ammonium acetate was used as the source of nitrogen for doping. The effect of dopants and the post-heating temperature on the various physical properties of the deposited films was explored. The X-ray diffraction studies reveal the polycrystalline nature of the films which possess a preferred c-axis orientation. Raman characterizations of the films show a clear indication of nitrogen incorporation in the films. The carrier concentration of the thin films was of the order of 1017/cm3 and resistivity as minimum as 0.371 Ω cm was observed for 1 at.% NZO thin films post-heated at 500 °C. The 1 at.% and 2 at.% doped NZO films post-heated at 300 °C and 1 at.%, 2 at.% and 3 at.% doped NZO films with post-heat treatment at 500 °C exhibited p-type conductivity. In the aging study, 500 °C annealed films retained p-type conductivity for 5 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Xu, X. Li, Y. Chen, F. Xu, Appl. Surf. Sci. 257, 4031 (2011)

    Article  ADS  Google Scholar 

  2. E. Senadim, K. Kara, S. Elagoz, D. Kadir, Appl. Surf. Sci. 318, 157 (2014)

    Article  ADS  Google Scholar 

  3. M.O.K. Rajan, Characterization of P-type zinc oxide films (University of South Florida, Tampa, 2004)

    Google Scholar 

  4. D.G. Thomas, J. Phys. Chem. Solids 9, 31 (1959)

    Article  ADS  Google Scholar 

  5. A. Janotti, C.G. Van De Walle, Rep. Prog. Phys. 72, 126501 (2009)

    Article  ADS  Google Scholar 

  6. D.C. Look, D. Reynolds, C. Litton, R. Jones, D. Eason, G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002)

    Article  ADS  Google Scholar 

  7. T. Yamamoto, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 38, L166 (1999)

    Article  ADS  Google Scholar 

  8. S. Dhara, P. Giri, Thin Solid Films 520, 5000 (2012)

    Article  ADS  Google Scholar 

  9. O. Bierwagen, T. Ive, C.G. Van de Walle, J.S. Speck, Appl. Phys. Lett. 93, 242108 (2008)

    Article  ADS  Google Scholar 

  10. S. Golshahi, S.M. Rozati, R. Martins, E. Fortunato, Thin Solid Films 518, 1149 (2009)

    Article  ADS  Google Scholar 

  11. S.S. Shinde, P.S. Shinde, Y.W. Oh, D. Haranath, C.H. Bhosale, K.Y. Rajpure, J. Anal. Appl. Pyrol. 97, 180 (2015)

    Google Scholar 

  12. M.S.A. El-saddek, I.S. Yahia, Z.A. Alahmed, F. Yakuphanoglu, J. Electroceram 30, 152 (2013)

    Article  Google Scholar 

  13. Y.G. Wang, S.P. Lau, X.H. Zhang, H.W. Lee, H.H. Hng, B.K. Tay, J. Cryst. Growth 252, 26 (2003)

    Article  Google Scholar 

  14. C.H. Park, S.H. Wei, Phys. Rev. B 66, 073202 (2016)

    Article  ADS  Google Scholar 

  15. T.M. Barnes, K. Olson, C.A. Wolden, Appl. Phys. Lett. 86, 112112 (2005)

    Article  ADS  Google Scholar 

  16. L.L. Kerr, X. Li, M. Canepa, A.J. Sommer, Thin Solid Films 515, 5282 (2007)

    Article  ADS  Google Scholar 

  17. E. Alves, N. Franco, N. Barradas, F. Munnik, T. Monteiro, M. Peres, J. Wang, R. Martins, E. Fortunato, Vacuum 83, 1274 (2009)

    Article  ADS  Google Scholar 

  18. T.K. Pathak, V. Kumar, H.C. Swart, L.P. Purohit, Physica E 77, 1 (2016)

    Article  ADS  Google Scholar 

  19. M. Zaharescu, S. Mihaiu, A. Toader, I. Atkinson, J. Calderon-Moreno, M. Anastasescu, M. Nicolescu, M. Duta, M. Gartner, K. Vojisavljevic, B. Malic, V.A. Ivanov, E.P. Zaretskaya, Thin Solid Films 571, 727 (2014)

    Article  ADS  Google Scholar 

  20. S. Goto, N. Fujimura, T. Nishihara, T. Ito, J. Cryst. Growth 115, 816 (1991)

    Article  ADS  Google Scholar 

  21. U. Chaitra, D. Kekuda, K.M. Rao, Ceram. Int. 43, 7115 (2017)

    Article  Google Scholar 

  22. R. Kumari, A. Sahai, N. Goswami, Prog. Nat. Sci. Mater. Int. 25, 300 (2015)

    Article  Google Scholar 

  23. B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addison-Wesley, Boston, 1978)

    Google Scholar 

  24. D. Zhang, P. Fan, X. Cai, J. Huang, L. Ru, Z. Zheng, G. Liang, Y. Huang, Appl. Phys. A 2, 437 (2009)

    Article  ADS  Google Scholar 

  25. T.K. Pathak, V. Kumar, H.C. Swart, L.P. Purohit, Phys. B Condens. Matter 480, 31 (2016)

    Article  ADS  Google Scholar 

  26. A. Campion, P. Kambhampati, Chem. Soc. Rev. 27, 241 (1998)

    Article  Google Scholar 

  27. C. Kranert, R. Schmidt-Grund, M. Grundmann, New J. Phys. 15, 113048 (2013)

    Article  ADS  Google Scholar 

  28. Z. Xiao, Y. Liu, J. Zhang, D. Zhao, Y. Lu, D. Shen, X. Fan, Semicond. Sci. Technol. 20, 796 (2005)

    Article  ADS  Google Scholar 

  29. A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, Appl. Phys. Lett. 80, 1909 (2002)

    Article  ADS  Google Scholar 

  30. T. Ohgaki, N. Ohashi, S. Sugimura, H. Ryoken, I. Sakaguchi, Y. Adachi, H. Haneda, J. Mater. Res. 23, 2293 (2008)

    Article  ADS  Google Scholar 

  31. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi (b) 15, 627 (1966)

    Article  ADS  Google Scholar 

  32. U. Chaitra, D. Kekuda, K.M. Rao, J. Mater. Sci. Mater. Electron. 27, 7614 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore for providing Raman Characterization facility and Manipal Academy of Higher Education, Manipal, for other characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjaya Kekuda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaitra, U., Mahesha, M.G., Kekuda, D. et al. Effect of doping concentration and annealing temperature on nitrogen-doped ZnO thin films: an investigation through spectroscopic techniques. Appl. Phys. A 125, 394 (2019). https://doi.org/10.1007/s00339-019-2681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2681-y

Navigation