Skip to main content
Log in

Surface Impregnation of Niobium Alloy in Grinding by Corundum and Silicon-Carbide Wheels

  • Published:
Russian Engineering Research Aims and scope

Abstract

The formation of surface relief after the grinding of a niobium alloy by corundum and silicon-carbide wheels with ceramic binder is considered. A scanning dual-beam electron microscope is used to study the ground surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Dritsa, M.E., Svoistva elementov: Spravochnik (Properties of Elements: Handbook), Moscow: Metallurgiya, 1985.

  2. Chelnokov, V.S., Blinkov, I.V., and Anikin, A.O., Tugoplavkie metally: primenenie i svoistva tugoplavkikh metallov (Refractory Metals: Applications and Properties of Refractory Metals), Moscow: Mosk. Inst. Stali Splavov, 2011. ISBN 978-5-87623-392-9

  3. Nosenko, V.A., The effect of contact interaction on wear of abrasive tools during grinding, Probl. Mashinostr. Nadezhnosti Mash., 2005, no. 1, pp. 73–77.

  4. Spravochnik tekhnologa (Handbook of Technologist), Suslov, A.G., Ed., Moscow: Innovatsionnoe Mashinostroenie, 2019. ISBN 978-5-907104-23-5

    Google Scholar 

  5. Botyashin, V.N., Koziner, Yu.D., Orlov, V.I., and Kravtsov, D.A., Improving the efficiency of the grinding of refractory niobium alloys, Nauchno-Tekh. Vestn. Povolzh., 2018, no. 4, pp. 30–32. https://doi.org/10.24153/2079-5920-2018-8-4-30-32

  6. Volkov, A.I., Stroenie atomov i periodicheskii zakon: Uchebnoe posobie (The Structure of Atoms and the Periodic Law: Manual), Moscow: Novoe Znanie, 2006.

  7. Nosenko, V.A., Intensity of contact interaction of d-transitional metals with silicon carbide during grinding, Probl. Mashinostr. Nadezhnosti Mash., 2002, no. 5, pp. 78–84.

  8. Nosenko, V.A., Fetisov, A.V., and Kuznesov, S.P., Transfer of cubic boron nitride grinding wheel wear products to the nickel alloy surface, MATEC Web Conf., 2020, vol. 329, art. ID 03050.

  9. Nosenko, S.V., Nosenko, V.A., and Kremenetskii, L.L., The condition of machined surface of titanium alloy in dry grinding, Procedia Eng., 2017, vol. 206, pp. 115–120.

    Article  Google Scholar 

  10. Nosenko, S.V., Nosenko, V.A., Krutikova, A.A., and Kremenetskii, L.L., Surface-layer composition of titanium alloy after dry grinding by a silicon-carbide wheel, Russ. Eng. Res., 2015, vol. 35, no. 7, pp. 554–557.

    Article  Google Scholar 

  11. Miao, Q., Ding, W., Gu, Y., and Xu, J., Comparative investigation on wear behavior of brown alumina and microcrystalline alumina abrasive wheels during creep feed grinding of different nickel-based superalloys, Wear, 2019, vols. 426–427, pp. 1624–1634.

    Article  Google Scholar 

  12. de Mello, A.V., de Silva, R.B., Machado, Á.D., Gelamo, R.V., et al., Surface grinding of Ti–6Al–4V alloy with SiC abrasive wheel at various cutting conditions, Procedia Manuf., 2017, vol. 10, pp. 590–600.

    Article  Google Scholar 

  13. Lv, X., Duan, F., Fu, X., and Gan, L., Deep active learning for surface defect detection, Sensors, 2020, vol. 20, no. 6, p. 1650.

    Article  Google Scholar 

  14. Boud, F., Carpenter, C., Folkes, J., and Shipway, P., Abrasive water jet cutting of a titanium alloy: the influence of abrasive morphology and mechanical properties on workpiece grit embedment and cut quality, J. Mater. Process. Technol., 2010, vol. 210, pp. 2197–2205.

    Article  Google Scholar 

  15. Tressia, G., Penagos, J.J., and Sinatora, A., Effect of abrasive particle size on slurry abrasion resistance of austenitic and martensitic steels, Wear, 2017, vols. 376–377, pp. 63–69.

    Article  Google Scholar 

  16. Nosenko, S.V., Nosenko, V.A., and Kremenetskii, L.L., Influence of dressing of the wheel on the surface quality of titanium alloy in deep grinding, Russ. Eng. Res., 2014, vol. 34, no. 10, pp. 632–636.

    Article  Google Scholar 

  17. Nosenko, V.A., Fetisov, A.V., and Kuznetsov, S.P., Morphology and chemical composition of the titanium alloy surface at the initial stage of grinding with a cubic boron nitride wheel, Obrab. Met.: Tekhnol., Oborud., Instrum., 2020, vol. 22, no. 2, pp. 30–40.

    Google Scholar 

  18. Wang, R.X., Zhou, K., Yang, J., Ding, H., et al., Effects of abrasive material and hardness of grinding wheel on rail grinding behaviors, Wear, 2020, vols. 454–455, art. ID 203332.

    Article  Google Scholar 

  19. Hood, R., Cooper, P., Aspinwall, D.K., and Soo, S.L., Creep feed grinding of γ-TiAl using single layer electroplated diamond superabrasive wheels, CIRP J. Manuf. Sci. Technol., 2015, vol. 11, pp. 36–44.

    Article  Google Scholar 

  20. Liao, Z., Abdelhafeez, A., Li, H., Yang, Y., et al., State-of-the-art of surface integrity in machining of metal matrix composites, Int. J. Mach. Tools Manuf., 2019, vol. 143, pp. 63–91.

    Article  Google Scholar 

  21. Lv, X., Duan, F., Fu, X., and Gan, L., Deep active learning for surface defect detection, Sensors, 2020, vol. 20, no. 6, p. 1650.

    Article  Google Scholar 

  22. Nosenko, V.A., Belukhin, R.A., Fetisov, A.V., and Morozova, L.K., Testing complex based on the CHEVALIER precision profile-grinding CNS machine of SMART-V1224 III model, Izv. Volgograd. Gos. Tekh. Univ., 2016, no. 5 (184), pp. 35–39.

  23. Garshin, A.P. and Fedotova, S.M., Abrazivnye materialy i instrumenty. Tekhnologiya proizvodstva (Abrasive Materials and Tools: Production Technology), St. Petersburg: S-Peterb. Gos. Politekhn. Univ., 2008. ISBN 978-5-7422-1853-1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Nosenko.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosenko, V.A., Fetisov, A.V., Kuznetsov, S.P. et al. Surface Impregnation of Niobium Alloy in Grinding by Corundum and Silicon-Carbide Wheels. Russ. Engin. Res. 42, 145–150 (2022). https://doi.org/10.3103/S1068798X22020186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X22020186

Keywords:

Navigation