Skip to main content
Log in

On a class of fractional non-selfadjoint operators associated with differential equations

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We present a research method for non-selfadjoint integral operators associated with fractional differential equations. With the help of this method we, in particular, estimate eigen-functions and eigenvalues of the boundary-value problem for a fractional oscillatory equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleroev, T. S. “Boundary Value Problems for Differential Equations of Fractional Order,” Sib. Elektron.Mat. Izv. 10, 41–55 (2013).

    MathSciNet  Google Scholar 

  2. Malamud, M. M. and Oridoroga, L. L. “Analog of Birkhoff Theorem and Completeness of Root Subspaces of Some Boundary Value Problems,” Russ. J. Math. Phys 8, No. 3, 287–308 (2001).

    MATH  MathSciNet  Google Scholar 

  3. Malamud, M. M. and Oridoroga, L. L. “On Some Questions of the Spectral Theory of Ordinary Differential Equations of Fractional Order,” Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, No. 9, 39–47 (1998); J.Math. Sci. 174, No. 4 (April 2011).

    Google Scholar 

  4. Malamud, M. M. “Similarity of Volterra Operators and Related Questions of the Theory of Differential Equations of Fractional Order,” Trans. Moscow Math. Soc. 55, 57–132 (1994).

    MathSciNet  Google Scholar 

  5. Aleroev, T. S. “On a Boundary Value Problem for a Fractional-Order Differential Equation,” Differ.Equations 34, No. 1, 123 (1998).

    MathSciNet  Google Scholar 

  6. Kaufmann, E. R. “Existence and Nonexistence of Positive Solutions for a Nonlinear Fractional Boundary Value Problem,” Discrete and Continuous Dynamical Systems, 416–423 (2009).

    Google Scholar 

  7. Nakhushev, A.M. Fractional Calculus and Its Applications (Fizmatlit, Moscow, 2003) [in Russian].

    MATH  Google Scholar 

  8. Aleroev, T. S. “On the Completeness of a System of Eigenfunctions of a Fractional-Order Differential Operator,” Differ. Equ. 36, No. 6, 918–919 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  9. Aleroev, T. S. “Boundary Value Problems for Differential Equations of Fractional Order,” Doctoral Dissertation in Mathematics and Physics (Moscow State University, 2000).

    Google Scholar 

  10. Aleroev, T. S. Aleroeva, H. T. Ning-Ming Nie, and Yi-Fa Tang, “Boundary Value Problems for Differential Equations of Fractional Order,” Mem. Diff. Equat. Math. Phys. 49, 19–82 (2010).

    MathSciNet  Google Scholar 

  11. Aleroev, T. S. and Aleroeva, H. T. “A Problem on the Zeros of the Mittag-Leffler Function and the Spectrum of a Fractional-Order Differential Operator,” Electron. J. Qual. Theory Diff. Equ., No. 25, 18 p. (2009).

    Google Scholar 

  12. Yuan Chengjun, “Multiple Positive Solutions for (n − 1, 1)-Type Semipositone Conjugate Boundary Value Problems of Nonlinear Fractional Differential Equations,” Electron. J. Qual. Theory Diff. Equ., No. 36, 1–12 (2010).

    Google Scholar 

  13. Mainardi, F. “Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena Chaos,” Solutions and Fractals 7, No. 9, 1461–1477 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  14. Aleroev, T. S. “On a Class of Operators Associated with Differential Equations of Fractional Order,” Siberian Math. J. 46, No. 6, 963–968 (2005).

    Article  MathSciNet  Google Scholar 

  15. Kekharsaeva, E. R., Mikitaev, A. K., and Aleroev, T. S. “Models of Strss-Strain Characteristics of Chlor-Containing Polyesters on the Basis of Derivatives of Fractional Order,” Plast.Massy, No. 3, P. 35 (2001).

    Google Scholar 

  16. Aleroev, T. S. and Gachaev, A. M. “To the Problem on Zeros of a Function of Mittag-Leffler Type,” in Proceedings of International Russian-Uzbek Symposium ‘Mixed-Type Equations and Related Problems of Analysis and Informatics’, Nal’chik-Elbrus, pp. 14–15 (2003).

    Google Scholar 

  17. Aleroev, T. S. and Aleroeva, H. T. “Some Applications of the Theory of Perturbations in Fractional Calculus,” Dokl. Adygeiskoi (Cherkesskoi)Mezhdunarod. Akademii Nauk 10, No. 2, 9–13, (2008).

    Google Scholar 

  18. Kato, T. Perturbation Theory for Linear Operators (Springer, Berlin-Heidelberg, 1966; Mir, Moscow, 1972).

    Book  MATH  Google Scholar 

  19. Loginov, B. V. “Estimation of Accuracy of theMethod of Perturbations,” Izv. Akad. Nauk UzSSR. Ser. Fiz.-Matem., No. 6, 14–19 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Aleroev.

Additional information

Original Russian Text © T.S. Aleroev, Kh.T. Aleroeva, 2014, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, No. 10, pp. 3–12.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleroev, T.S., Aleroeva, K.T. On a class of fractional non-selfadjoint operators associated with differential equations. Russ Math. 58, 1–9 (2014). https://doi.org/10.3103/S1066369X14100016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X14100016

Keywords

Navigation