Skip to main content
Log in

Applying the photonuclear technique to fissile materials detection

  • Proceedings of the International Conference “Nuclei-2010. Methods of Nuclear Physics for Femto- and Nanotechnologies” (The 60th International Meeting on Nuclear Spectroscopy and the Structure of Atomic Nuclei)
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Application of a photonuclear technique is considered as a nondestructive method for detecting the unauthorized transporting of camouflaged fissile nuclear material in cargo containers. The advantages of the technique (the use of time selection and the analysis of energy distributions of delayed neutrons) are demonstrated. The operating modes of the accelerator were optimized by modeling. A version of a neutron scintillation spectrometer based on a stylbene monocrystal is presented along with its schematic and main parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nedorezov, V.G. and Ranyuk, Yu.N., Fotodelenie yader za gigantskim rezonansom (Nuclei Photofission after Enormously Huge Resonance), Kiev: Naukova Dumka, 1989.

    Google Scholar 

  2. Aristov, L.I., Vladimirov, A.N., Kushin, V.V., et al., Inzh. Ekol., 2001, no. 3.

  3. Frolov, V.V., Yaderno-fizicheskie metody kontrolya delyashchikhsya veshchestv (Nuclear-Physical Methods for Controlling the Delaying Substances), Moscow: Energoatomizdat, 1976.

    Google Scholar 

  4. Bollinger, L.M. and Thomas, G.E., Rev. Sci. Instr., 1961, vol. 32, no. 9, p. 1044.

    Article  ADS  Google Scholar 

  5. Baker, J.H., Glunov, N.Z., Kostin, V.G., et al., Probl. Atom. Sci. Technol. Ser. Nucl. Phys. Invest., 2007, vol. 48, no. 5, p. 126.

    Google Scholar 

  6. Gatti, E. and De Martini, F, Nucl. Electron., 1962, vol. 2, p. 265.

    Google Scholar 

  7. Roush, M.L., Wilson, M.A., Hornyak, W.F., Nucl. Instrum. Methods Phys. Res., 1964, vol. 31, p. 112.

    Article  ADS  Google Scholar 

  8. Sabbah, B. and Suhami, A., Nucl. Instrum. Methods Phys. Res., 1969, vol. 58, p. 102.

    ADS  Google Scholar 

  9. Ranucci, G., Goretti, A., and Lombardi, P., Nucl. Instrum. Methods. A, 1998, vol. 412, p. 374.

    Article  Google Scholar 

  10. Wolski, D., Moszynski, M., and Ludzievski, T., et al., Nucl. Instrum. Methods. Phys. Res. A, 1995, vol. 360, p. 594.

    Article  ADS  Google Scholar 

  11. Verbitsky, S.S., Nucl. Instrum. Methods, 1978, vol. 151, p. 117.

    Article  ADS  Google Scholar 

  12. Verbitskii, S.S., Lapik, A.M., Minaev, A.I., et al., Prib. Tekh. Eksp., 1992, no. 2, p. 135.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Lapik.

Additional information

Original Russian Text © S.S. Verbitskii, V.N. Emokhonov, A.M. Lapik, V.G. Nedorezov, A.V. Rusakov, G.V. Solodukhov, M.A. Tikhanov, A.A. Turinge, A.N. Tselebrovskii, 2011, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2011, Vol. 75, No. 11, pp. 1640–1645.

About this article

Cite this article

Verbitskii, S.S., Emokhonov, V.N., Lapik, A.M. et al. Applying the photonuclear technique to fissile materials detection. Bull. Russ. Acad. Sci. Phys. 75, 1544–1548 (2011). https://doi.org/10.3103/S1062873811040411

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873811040411

Keywords

Navigation