Skip to main content
Log in

Physical Simulation Modeling as a Tool for Predicting Mechanical Properties of Large-Diameter Pipes: A Review

  • Published:
Steel in Translation Aims and scope

Abstract

The review presents analysis of literature sources on the problem of predicting mechanical properties of large-diameter pipes based on the properties of the original hot-rolled sheet. It is shown that methods of physical and simulation modeling make it possible to obtain reliable data on the behavior of pipe steels and their properties without manufacturing pipes and to develop models for calculating and predicting mechanical properties of finished pipes, taking into account the conditions of their production. Models that take into account the Bauschinger effect, which occurs during alternating deformation during pipe processing, have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Klyukvin, M.B., Ordin, V.G., Matrosov, Yu.I., Loskutov, A.Yu., Zinchenko, Yu.A., Kolyasnikova, N.V., Levchenko, V.I., Sagirov, R.I., and Konovalov, G.N., Change in X80 steel plate mechanical properties during pipe manufacture, Metallurgist, 2012, vol. 56, nos. 7–8, pp. 591–596. https://doi.org/10.1007/s11015-012-9620-x

    Article  CAS  Google Scholar 

  2. Filippov, G.A., Livanova, O.V., Solov’ev, D.M., and Shabalov, I.P., Comparative analysis of the effect of the way of forming on the complex of mechanical propertiesand resistance to fracture of the metal of electric welded pipes of large diameter, Probl. Chern. Metall. Materialoved., 2017, no. 3, pp. 56–65.

  3. Shabalov, I.P., Solov’ev, D.M., Filippov, G.A., and Livanova, O.V., Influence of UO shaping on the mechanical properties of large-diameter electrowelded pipe, Steel Transl., 2015, vol. 45, no. 4, pp. 287–292. https://doi.org/10.3103/s0967091215040129

    Article  Google Scholar 

  4. Shabalov, I.P., Solov’ev, D.M., Filippov, G.A., and Livanova, O.V., Influence of 3-roll bending process on the mechanical properties of the metal of large diameter electric-welded pipes, Probl. Chern. Metall. Materialoved., 2015, no. 1, pp. 60–69.

  5. Livanova, O.V., Shabalov, I.P., and Filippov, G.A., Mechanical properties, fracture resistance, and tendency to deformation aging of metal of electric-welded pipes of large diameter at U-shaped press,, 2017, no. 1, pp. 95–101.

  6. Nesterov, G.V., Studenov, E.P., and Gavrilov, D.A., Evaluation of the pipe processing effect on the properties of large diameter metal pipes of strength class K56, Nauka Tekhnol. Truboprovodnogo Transp. Nefti Nefteproduktov, 2017, vol. 7, no. 3, pp. 48–57. https://doi.org/10.28999/2541-9595-2017-7-3-48-57

    Article  Google Scholar 

  7. Nesterov, G.V., Gavrilov, D.A., Poshibaev, P.V., and Azarin, A.I., Changes in mechanical properties of sheet metal in the manufacturing process of large diameter pipes for oil pipelines, Mekh. Mash., Mekh. Mater., 2017, no. 4, pp. 56–65.

  8. Samusev, S.V. and Fadeev, V.A., Improvement of method for estimation of parameters of contact interaction of billet with roll tool in lines of continuous electric pipe-welded mills, Chern. Met., 2017, no. 9, pp. 14–19. https://doi.org/10.17580/chm.2021.04.03

  9. Tovmasyan, M.A. and Samusev, S.V., Effect of the nonuniform distribution of the mechanical properties of rolled sheets on the shape of a round billet after forming in making large-diameter pipes, Russ. Metall., 2020, vol. 2020, no. 5, pp. 589–596. https://doi.org/10.1134/s0036029520050158

    Article  ADS  Google Scholar 

  10. Samusev, S.V. and Fadeev, V.A., Study of the contact interaction of a strip with work rolls during continuous scelping of welded pipes in a TESA line, Chern. Met., 2020, no. 2, pp. 41–46.

  11. Samusev, S.V. and Fadeev, V.A., Continuous shaping of welded straight-seam pipe in the open stands of a pipe-welding system, Steel Transl., 2019, vol. 49, no. 7, pp. 447–453. https://doi.org/10.3103/s0967091219070118

    Article  Google Scholar 

  12. Goli-Oglu, E.A., Alistaev, A.N., Gonoshenko, I.V., and Poroshkov, A.V., Influence of alternating cold flexure on the properties of low-alloy pipe steel (strength class K56–K65), Steel Transl., 2014, vol. 44, no. 2, pp. 156–161. https://doi.org/10.3103/s0967091214020053

    Article  Google Scholar 

  13. Kolbasnikov, N.G. and Bezobrazov, Yu.A., Finished rolled stretching temperature effect on mechanical properties formation of large diameter pipes, Nauchn.-Tekh. Vedomosti S.-Peterb. Gos. Politekh. Univ., 2014, no. 1, pp. 113–120.

  14. Kudrya, A.V., Sokolovskaya, E.A., Trachenko, V.A., Ning, L.H., Skorodumov, S.V., and Papina, K.B., Measurement of nonuniformity of fracture in structural steels with heterogeneous structure, Met. Sci. Heat Treat., 2015, vol. 57, nos. 3–4, pp. 190–196. https://doi.org/10.1007/s11041-015-9860-z

    Article  ADS  CAS  Google Scholar 

  15. Kudrya, A.V., Sokolovskaya, E.A., Salikhov, T.Sh., Ponomareva, M.V., Skorodumov, S.V., and Glu-khov, M.G., Evaluation of nonuniform sheet-steel quality, Steel Transl., 2008, vol. 38, no. 11, pp. 910–916. https://doi.org/10.3103/s0967091208110077

    Article  Google Scholar 

  16. Adigamov, R.R., Andreev, V.A., Rogachev, S.O., Fedotov, E.S., Khadeev, G.E., and Yusupov, V.S., Effect of pipe forming on the mechanical properties of large diameter pipes, Russ. Metall., 2023, vol. 2023, no. 4, pp. 498–507. https://doi.org/10.1134/S003602952304002X

    Article  ADS  Google Scholar 

  17. Li, Zh. and Gu, H., Bauschinger effect and residual phase stresses in two ductile-phase steels: Part I. The influence of phase stresses on the Bauschinger effect, Metall. Trans. A, 1990, vol. 21, pp. 717–724. https://doi.org/10.1007/BF02671942

    Article  Google Scholar 

  18. Khadeev, G.E., Effect of multi-stage deformation during the pipe processing on mechanical properties of steels strength grade X70-X80, The 8th Int. SteelSim Conf., Toronto: AIST, 2019, pp. 347–357. https://doi.org/10.33313/503/036

  19. Kharitonov, V.A. and Maloletkova, E.O., Impact of the Bauschinger effect on the strength characteristics of high-strength pipes, Obrab. Sploshnykh Sloistykh Mater., 2010, no. 36, pp. 28–33.

  20. Bezobrazov, Yu.A., Kolbasnikov, N.G., and Naumov, A.A., Tension-compression method in the simulation of multistage plastic deformation, Steel Transl., 2014, vol. 44, no. 1, pp. 71–79. https://doi.org/10.3103/S0967091214010057

    Article  Google Scholar 

  21. Kolbasnikov, N.G., Zotov, O.G., Martyashov, I.S., and Sulyagin, R.V., The Bauschinger effect and the formation of microalloyed-steel properties in pipe manufacture, Steel Transl., 2012, vol. 42, no. 8, pp. 657–662. https://doi.org/10.3103/s0967091212080049

    Article  Google Scholar 

  22. Kostryzhev, A.G., Strangwood, M., and Davis, C.L., Bauschinger effect in Nb and V alloyed line-pipe steels, Ironmaking Steelmaking, 2009, vol. 36, no. 3, pp. 186–192. https://doi.org/10.1179/174328109x401532

    Article  CAS  Google Scholar 

  23. Han, K., Van Tyne, C.J., and Levy, B.S., Effect of strain and strain rate on the Bauschinger effect response of three different steels, Metall. Mater. Trans. A, 2005, vol. 36, no. 9, pp. 2379–2384. https://doi.org/10.1007/s11661-005-0110-7

    Article  Google Scholar 

  24. Adigamov, R.R., Andreev, V.A., Rogachev, S.O., Fedotov, E.S., Khadeev, G.E., and Yusupov, V.S., Bauschinger effect in alternating deformation, Steel Transl., 2022, vol. 52, no. 7, pp. 639–647. https://doi.org/10.3103/S0967091222070026

    Article  Google Scholar 

  25. Kostryzhev, A.G., Strangwood, M., and Davis, C.L., Mechanical property development during UOE forming of large diameter pipeline steels, SimPro-08: Proc. 2nd Int. Conf., 2008, pp. 397–407.

  26. Kostryzhev, A.G., Strangwood, M., and Davis, C.L., Bauschinger effect in microalloyed steels: Part I. Dependence on dislocation-particle interaction, Metall. Mater. Trans. A, 2010, vol. 41, no. 6, pp. 1399–1408. https://doi.org/10.1007/s11661-010-0196-4

    Article  CAS  Google Scholar 

  27. Jiao, J., Lu, C., Lee, C., Bae, J., and Barbaro, F., Introduction of the delta concept for characterising pipe yield strength, Int. J. Mater. Form., 2020, vol. 13, no. 4, pp. 623–637. https://doi.org/10.1007/s12289-019-01501-7

    Article  Google Scholar 

  28. Jiao, J., Lu, C., Linton, V., and Barbaro, F., The effects of operational, testing, and material characterizations on the change in yield strength from plate to pipe, J. Pressure Vessel Technol., 2021, vol. 143, no. 4, p. 041504. https://doi.org/10.1115/1.4049986

    Article  Google Scholar 

  29. Kim, J., Kang, S.-C., Kim, J.-K., and Song, J., Yield strength estimation of X65 and X70 steel pipe with relatively low t/D ratio, Steel Compos. Struct., 2021, vol. 38, no. 2, pp. 151–164.

    Google Scholar 

  30. Cooreman, S., Thibaux, P., and Liebeherr, M., Prediction of mechanical properties on large diameter welded pipes through advanced constitutive modelling, J. Phys.: Conf. Ser., 2018, vol. 1063, p. 012043. https://doi.org/10.1088/1742-6596/1063/1/012043

    Article  CAS  Google Scholar 

  31. Zou, T., Li, D., Wu, G., and Peng, Yi., Yield strength development from high strength steel plate to UOE pipe, Mater. Des., 2016, vol. 89, pp. 1107–1122. https://doi.org/10.1016/j.matdes.2015.10.095

    Article  CAS  Google Scholar 

  32. Moon, J., Jeong, H.J., Joo, S.-H., Sohn, S.S., Kim, K.-S., Lee, S., and Kim, H.S., Simulation of pipe-manufacturing processes using sheet bending-flattening, Exp. Mech., 2018, vol. 58, no. 6, pp. 909–918. https://doi.org/10.1007/s11340-018-0397-0

    Article  CAS  Google Scholar 

  33. Zhang, W., Ding, D., and Gu, M., A model for predicting the yield strength difference between pipe and plate of low-carbon microalloyed steel, Metall. Mater. Trans. A, 2012, vol. 43, no. 13, pp. 5308–5315. https://doi.org/10.1007/s11661-012-1336-9

    Article  CAS  Google Scholar 

  34. Kostryzhev, A.G., Bauschinger effect in Nb and V microalloyed line pipe steels, PhD Thesis, Birmingham: Univ. of Birmingham, 2009.

  35. Kudrya, A.V., Moskalenko, V.A., Gryzunov, V.I., Sokolovskaya, E.A., and Ivashchenko, A.V., Using the databases of production inspection for managing the product quality, Elektrometallurgiya, 2000, no. 12, pp. 34–37.

  36. Mentyukov, K.Yu., Bortsov, A.N., Velichko, A.A., and Sychev, O.N., Predicting the mechanical properties of the base metal at producing longitudinally welded pipes of large diameter, Probl. Chern. Metall. Materialoved., 2016, no. 4, pp. 59–67.

  37. Mentyukov, K.Yu., Effect of chemical and deformation treatment on the mechanical properties of 17Kh18N9 and 01Kh17N13M3 steels, Cand. Sci. (Eng.) Dissertation, Moscow: 2017.

  38. Mentyukov, K.Yu., Bortsov, A.N., and Goroshko, T.V., Anisotropy of mechanical properties and sensitivity of mechanical properties to deformation aging of base metal of high-strength thick-walled pipes, Probl. Chern. Metall. Materialoved., 2015, no. 2, pp. 57–65.

  39. Mentyukov, K.Yu., Bortsov, A.N., Shabalov, I.P., and Mansyrev, E.I., Study of the properties of the base metal of large-diameter pipes under alternating loading, Metallurgist, 2016, vol. 60, nos. 3–4, pp. 397–404. https://doi.org/10.1007/s11015-016-0305-8

    Article  CAS  Google Scholar 

  40. Efron, L.I., Metallovedenie v bol’shoi metallurgii. Trubnye stali (Metal Science in Large-Scale Metallurgy: Pipe Steels), Moscow: Metallurgiya, 2012.

Download references

Funding

The work was carried out within the framework of the state assignment of the Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, no. 075-00715-22-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Rogachev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by Sh. Galyaltdinov

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adigamov, R.R., Andreev, V.A., Rogachev, S.O. et al. Physical Simulation Modeling as a Tool for Predicting Mechanical Properties of Large-Diameter Pipes: A Review. Steel Transl. 53, 988–1000 (2023). https://doi.org/10.3103/S0967091223110025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091223110025

Keywords:

Navigation