Skip to main content
Log in

Liquid-Phase Boriding of High-Chromium Steel

  • Published:
Steel in Translation Aims and scope

Abstract

The structural-phase states and tribological properties of 12Kh18N10T steel subjected to electroexplosive alloying (EPA) with titanium and boron and subsequent electron-beam processing in various modes in terms of the energy density of the electron beam and the duration of the exposure pulse have been analyzed using methods of modern physical materials science. It has been established that EPA of steel with titanium and boron leads to the formation of a surface layer with multiphase submicro-nanocrystalline structure, characterized by the presence of micropores, microcracks, and microcraters. Complex processing, combining EPA and subsequent irradiation with high-intensity pulsed electron beams, leads to the formation of 60-μm-thick multiphase submicro-nanocrystalline surface layer. It is shown that the phase composition of a surface layer of steel is determined by the mass ratio of titanium and boron during electroexplosive alloying. The microhardness of a modified layer is defined by the relative mass fraction of titanium borides in the surface layer and can be more than 18 times higher than the microhardness of steel in its initial state (before electroexplosive alloying). Modes of complex processing have been determined at which the surface layer containing exclusively titanium borides and intermetallic compounds based on titanium and iron is formed. The maximum (approximately 82% by weight) titanium boride content is observed when steel is processed in a regime with the highest mass of boron powder in the sample (mB = 87.5 mg; mTi/mB = 5.202). With a decrease in mass of boron powder, the relative content of borides in the surface layer of steel decreases. It was found that integrated processing of steel is accompanied by a sevenfold increase in microhardness of the surface layer and wear resistance of the steel increases by more than nine times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Shulga, A.V., A comparative study of the mechanical properties and the behavior of carbon and boron in stainless steel cladding tubes fabricated by PM HIP and traditional technologies, J. Nucl. Mater., 2013, vol. 434, nos. 1–3, pp. 133–140.

    Article  CAS  Google Scholar 

  2. Ma, S. and Zhang, J., Wear resistant high boron cast alloy—A review, Rev. Adv. Mater. Sci., 2016, vol. 44, no. 1, pp. 54–62.

    CAS  Google Scholar 

  3. Zhang, J., Gao, Y., Xing, J., Ma, S., Yi, D., Liu, L., and Yan, J., Effects of plastic deformation and heat treatment on microstructure and properties of high boron cast steel, J. Mater. Eng. Perform., 2011, vol. 20, no. 9, pp. 1658–1664.

    Article  CAS  Google Scholar 

  4. Saha, R. and Ray, R.K., Development of texture, microstructure, and grain boundary character distribution in a high-strength boron-added interstitial-free steel after severe cold rolling and annealing, Metall. Mater. Trans. A, 2009, vol. 40, no. 9, pp. 2160–2170.

    Article  Google Scholar 

  5. Saha, R. and Ray, R.K., Microstructural and textural changes in a severely cold rolled boron-added interstitial-free steel, Scr. Mater., 2007, vol. 57, no. 3, pp. 841–844.

    Article  CAS  Google Scholar 

  6. He, L., Liu, Y., Li, J., and Li, B.H., Effects of hot rolling and titanium content on the microstructure and mechanical properties of high boron Fe–B alloys, Mater. Des., 2012, vol. 36, no. 4, pp. 88–93.

    Article  CAS  Google Scholar 

  7. Liu, Y., Li, B.H., Li, J., He, L., Gao, S.J., and Nieh, T.G., Effect of titanium on the ductilization of Fe–B alloys with high boron content, Mater. Lett., 2010, vol. 64, no. 11, pp. 1299–1301.

    Article  CAS  Google Scholar 

  8. Samsonov, G.V., Markovskii, L.Ya., Zhigach, A.F., and Valyashko, M.G., Bor. Ego soedineniya i splavy (Boron Compounds and Alloys), Samsonov, G.V., Ed., Kiev: Akad. Nauk UkrSSR, 1960.

  9. Ren, X., Fu, H., Xing, J., and Yi, Y., Effect of solidification rate on microstructure and toughness of Ca–Ti modified high boron high speed steel, Mater. Sci. Eng., A, 2019, vol. 742, pp. 617–627.

    Article  CAS  Google Scholar 

  10. Gribkov, V.A., Grigor’ev, F.I., Kalin, B.A., and Yakushin, V.L., Perspektivnye radiatsionno-puchkovye tekhnologii obrabotki materialov. Uchebnik (Prospective Radiation-Beam Technologies for Materials Processing: Manual), Moscow: Kruglyi Stol, 2001.

  11. Koval’, N.N. and Ivanov, Yu.F., Nanostructuring of surfaces of metalloceramic and ceramic materials by electron-beams, Russ. Phys. J., 2008, vol. 51, no. 5, pp. 505–516.

    Article  Google Scholar 

  12. Poate, J.M., Foti, G., and Jacobson, D.C., Surface Modification and Alloying: By Laser, Ion, and Electron Beams, New York: Springer, 1983.

    Book  Google Scholar 

  13. Shulov, V.A., Paikin, A.G., Novikov, A.S., et al., Sil’notochnye elektronnye impul’snye puchki dlya aviatsionnogo dvigatelestroeniya (High-Voltage Electronic Pulsed Beams for Aircraft Engines), Shulov, V.A., Novikov, A.S., and Engel’ko, V.I., Eds., Moscow: Artek, 2012.

  14. Kadyrzhanov, K.K., Komarov, F.F., Pogrebnyak, A.D., et al., Ionno-luchevaya i ionno-plazmennaya modifikatsiya materialov (Ion-Beam and Ion-Plasma Modification of Materials), Moscow: Mosk. Gos. Univ., 2005.

  15. Uglov, V.V., Cherenda, N.N., Anishchik, V.M., Astashinskii, V.M., and Kvasov, N.T., Modifikatsiya materialov kompressionnymi plazmennymi potokami (Modification of Materials by Compression Plasma Flows), Minsk: Bel. Gos. Univ., 2013.

  16. Budovskikh, E.A., Martusevich, E.V., Nosarev, P.S., Gromov, V.E., and Sarychev, V.D., Osnovy tekhnologii obrabotki poverkhnosti materialov impul’snoi geterogennoi plazmoi (Theoretical Fundamentals of Materials Surface Treatment by Pulsed Heterogeneous Plasma), Novokuznetsk: Sib. Gos. Ind. Univ., 2002.

  17. Bagautdinov, A.Ya., Budovskikh, E.A., Ivanov, Yu.F., and Gromov, V.E., Fizicheskie osnovy elektrovzryvnogo legirovaniya metallov i splavov (Physical Fundamentals of Electroexplosive Alloying of Metals and Alloys), Novokuznetsk: Sib. Gos. Ind. Univ., 2007.

  18. Konovalov, S., Gromov, V., and Ivanov, Yu., Multilayer structure of Al–Si alloy after electro-explosion alloying with yttrium oxide powder, Mater. Res. Express, 2018, vol. 5, no. 11, art. ID 116520.

    Article  Google Scholar 

  19. Romanov, D.A., Gromov, V.E., Budovskikh, E.A., and Ivanov, Yu.F., Regularities of structural phase states formation on surface of metals and alloys during electroexplosive alloying, Usp. Fiz. Met., 2015, vol. 16, no. 2, pp. 119–157.

    Article  CAS  Google Scholar 

  20. Struktura, fazovyi sostav i svoistva poverkhnostnykh sloev titanovykh splavov posle elektrovzryvnogo legirovaniya i elektronno-puchkovoi obrabotki (Structure, Phase Composition and Properties of Surface Layers of Titanium Alloys after Electroexplosive Alloying and Electron-Beam Processing), Gromov, V.E., Ivanov, Yu.F., and Budovskikh, E.A., Eds., Novokuznetsk: Inter-Kuzbass, 2012.

    Google Scholar 

  21. Sorokin, V.G., Volosnikova, A.V., Vyatkin, S.A., et al., Marochnik stalei i splavov (Grade Guide of Steels and Alloys), Sorokin, V.G., Ed., Moscow: Mashinostroenie, 1989.

    Google Scholar 

  22. Rotshtein, V., Ivanov, Yu., and Markov, A., Surface treatment of materials with low-energy, high-current electron beams, in Materials Surface Processing by Directed Energy Techniques, Pauleau, Y., Ed., Amsterdam: Elsevier, 2006, pp. 205–240.

    Google Scholar 

  23. Krishtal, M.M., Yasnikov, I.S., Polunin, V.I., Filatov, A.M., and Ul’yanenkov, A.G., Skaniruyushchaya elektronnaya mikroskopiya i rentgenospektral’nyi analiz v primerakh prakticheskogo primeneniya (Scanning Electron Microscopy and X-Ray Spectral Analysis in Practice), Krishtal, M.M., Ed., Moscow: Tekhnosfera, 2009.

    Google Scholar 

  24. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik (State Diagrams of Binary Metal Systems: Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 1.

    Google Scholar 

  25. Utevskii, L.M., Difraktsionnaya elektronnaya mikroskopiya v metallovedenii (Diffraction Electron Microscopy in Metal Science), Moscow: Metallurgiya, 1973.

  26. Tomas, G. and Goringe, M.J., Transmission Electron Microscopy of Materials, New York: Willey, 1979.

    Google Scholar 

  27. Andrews, K.W., Dyson, D.J., and Keown, S.R., Interpretation of Electron Diffraction Patterns, London, 1968.

    Google Scholar 

  28. Transmission Electron Microscopy Characterization of Nanomaterials, Kumar, C.S.S.R., Ed., New York: Springer, 2014.

    Google Scholar 

  29. Williams, D.B. and Carter, C.B., Transmission Electron Microscopy: A Textbook for Materials Science, Berlin: Springer, 2016.

    Google Scholar 

  30. Egerton, R.F., Physical Principles of Electron Microscopy, Berlin: Springer, 2016.

    Book  Google Scholar 

Download references

Funding

The study was financially supported by grants of the Russian Science Foundation (project no. 18-79-00013 (experiments on electrical explosive alloying) and project no. 19-19-00183 (electron microscopy)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. F. Ivanov, V. E. Gromov, D. A. Romanov, O. V. Ivanova or A. D. Teresov.

Additional information

Translated by A. Muravev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, Y.F., Gromov, V.E., Romanov, D.A. et al. Liquid-Phase Boriding of High-Chromium Steel. Steel Transl. 50, 452–459 (2020). https://doi.org/10.3103/S0967091220070062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091220070062

Keywords:

Navigation