Skip to main content
Log in

Regulating the Formation of Al2O3–CaO–MgO Inclusions in Pipe-Steel Production

  • Published:
Steel in Translation Aims and scope

Abstract

Research on Al2O3–CaO–MgO inclusions in steel produced on current systems is reviewed. Analysis of the data shows that magnesium-bearing inclusions of both exogenous and endogenous type are present. Consequently, conglomerates of nonuniform composition are formed. The presence of magnesium in nonmetallic oxide inclusions may largely be attributed to ladle treatment with deep reduction of the metal and slag in chambers with a magnesia lining. Erosion of the refractory lining of steel-smelting and steel-casting equipment must be regarded as a significant factor in the formation of magnesium-bearing inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Safronov, A.A., Movchan, M.A., Dub, V.S., Ioffe, A.V., Bazaev, E.L., and Pridein, A.A., Production of corrosion-resistant 09ГCФ steel, Steel Transl., 2016, vol. 46, no. 2, pp 150–158.

    Article  Google Scholar 

  2. Dub, V.S., Safronov, A.A., Movchan, M.A., et al., Effect of a secondary metallurgy technology on the types of forming nonmetallic inclusions and the corrosion resistance of steel, Russ. Metall. (Engl. Transl.), 2016, vol. 2016, no. 12, pp. 1135–1144.

  3. Beskow, K. and Du, S.C., Ironmaking Steelmaking, 2004, vol. 31, p. 393.

    Article  Google Scholar 

  4. Jiang, M., Wang, X.H., Chen, B., and Wang, W.J., ISIJ Int., 2008, vol. 48, p. 885.

    Google Scholar 

  5. Wang, X.H., Jiang, M., Chen, B., and Wang, W.J., Adv. Steels, 2011, vol. 6, p. 485.

    Article  Google Scholar 

  6. Osasa, T., Special Steel, 1991, vol. 40, p. 25.

    Google Scholar 

  7. Murakami, Y., Takada, M., and Toriyama, T., Int. J. Fatigue, 1998, vol. 20, p. 661.

    Article  Google Scholar 

  8. Takai, K., Seki, J., Sakita, E., and Takayama, K., Tetsu-to-Hagane, 1993, vol. 79, p. 685.

    Article  Google Scholar 

  9. Itoh, H., Hino, M., and Ban-ya, S., Tetsu-to-Hagane, 1998, vol. 84, p. 85.

    Article  Google Scholar 

  10. Itoh, H., Hino, M., and Ban-ya, S., Metall. Mater. Trans. B, 1997, vol. 28, p. 953.

    Article  Google Scholar 

  11. Park, J.H., Kim, D.S., and Lee, S.B., Metall. Mater. Trans. B, 2005, vol. 36, no. 22, p. 67.

    Article  Google Scholar 

  12. Park, J.H., Lee, S.B., and Gaye, H.R., Metall. Mater. Trans. B, 2008, vol. 39, p. 853.

    Article  Google Scholar 

  13. Park, J.H. and Todoroki, H., ISIJ Int., 2010, vol. 50, p. 1333.

    Article  Google Scholar 

  14. Kang, Y.J., Li, F., Morita, K., and Du, S.C., Steel Res. Int., 2006, vol. 7, no. 26, p. 785.

    Article  Google Scholar 

  15. Seo, C.W., Kim, S.H., Jo, S.K., et al., Metall. Mater. Trans. B, 2010, vol. 41, p. 790.

    Article  Google Scholar 

  16. Jiang, M., Wang, X.H., Chen, B., and Wang, W.J., ISIJ Int., 2010, vol. 50, p. 95.

    Google Scholar 

  17. Jiang, M., Wang, X.H., and Wang, W.J., Steel Res. Int., 2010, vol. 81, p. 759.

    Article  Google Scholar 

  18. Wang, X.H., Jiang, M., Chen, B., and Li, H.B., Sci. China Tech. Sci., 2012, vol. 55, p. 1683.

    Google Scholar 

  19. Dub, A.V., Goshkodera, S.V., Efimov, S.V., et al., The study and control of the nonmetal inclusions and low-alloyed pipe steel, Chern. Met., 2005, no. 10, pp. 30–35.

  20. Dub, A.V., Barulenkova, N.V., Morozova, T.V., Efimov, S.V., Filatov, V.N., Zinchenko, S.D., and Lamukhin, A.M., Nonmetallic inclusions in low-alloy tube steel, Metallurgist, 2005, vol. 49, no. 3, pp. 138–148.

    Article  Google Scholar 

  21. Zaitsev, A.I., Rodionova, I.G., Semernin, G.V., Shaposhnikov, N.G., and Kazankov, A.Yu., New types of unfavorable nonmetallic inclusions based on MgO–Al2O3 and metallurgical factors governing their content in metal. Part 1. Reasons and mechanisms for formation in steel of nonmetallic inclusions based on alumina magnesia spinel, Metallurgist, 2011, vol. 55, nos. 1–2, pp, 107–115.

  22. Zaitsev, A.I., Rodionova, I.G., Semernin, G.V., Shaposhnikov, N.G., and Kazankov, A.Yu., New types of unfavorable nonmetallic inclusions based on MgO–Al2O3 and metallurgical factors governing their content in metal. Part 2. Transformation mechanisms for nonmetallic inclusions based on alumina magnesia spinel. Main approaches making it possible to reduce the content of the inclusions in question in steel, Metallurgist, 2011, vol. 55, nos. 3–4, pp. 149–157.

    Article  Google Scholar 

  23. Stukalin, S.V. and Kazankov, A.Yu., Evolution of non-metal inclusions during out-of-furnace processing of construction steels, Probl. Chern. Metall. Materialoved., 2015, no. 1, pp. 50–59.

  24. Kazakov, A.A., Lyubochko, D.A., Ryaboshuk, S.V., and Chigintsev, L.S., Analysis of the nature of non-metal inclusions in steel using automatic analyzer of the particles, Chern. Met., 2014, no. 4, pp. 37–41.

  25. Kazakov, A.A., Kovalev, P.V., Ryaboshuk, S.V., Zhironkin, M.V., and Krasnov, A.V., Control of nonmetallic inclusions formation during converter steel production, Chern Met., 2014, no. 34, pp. 43–48.

  26. Harada, A., Miyano, G., Maruoka, N., et al., Dissolution behavior of Mg from MgO into molten steel deoxidized by Al, ISIJ Int., 2014, vol. 54, no. 10, pp. 2230–2238.

    Article  Google Scholar 

  27. Jiang, M., Wang, X., Chen, B., and Wang, W., Formation of MgOAl2O3 inclusions in high strength alloyed structural steel refined by CaO–SiO2–Al2O3–MgO slag, ISIJ Int., 2008, vol. 48, no. 7, pp. 885–890.

    Article  Google Scholar 

  28. Deng, Z. and Zhu, M., Evolution mechanism of non-metallic inclusions in Al-killed alloyed steel during secondary refining process, ISIJ Int., 2013, vol. 53, no. 3, pp. 450–458.

    Article  Google Scholar 

  29. Jiang, M., Wang, X., Chen, B., Wang, W., Laboratory study on evolution mechanisms of non-metallic inclusions in high strength alloyed steel refined by high basicity slag, ISIJ Int., 2010, vol. 50, no. 1, pp. 95–104.

    Article  Google Scholar 

  30. Yang, W., Zhang, L., Wang, X., et al., Characteristics of inclusions in low carbon Al-killed steel during ladle furnace refining and calcium treatment, ISIJ Int., 2013, vol. 53, no. 8, pp. 1401–1410.

    Article  Google Scholar 

  31. Ma, W., Bao, Y., Wang, M., and Zhao, L., Effect of Mg and Ca treatment on behavior and particle size of inclusions in bearing steels, ISIJ Int., 2014, vol. 54, no. 3, pp. 536–542.

    Article  Google Scholar 

  32. Semernin, G.V., Efficient technologies of ladle processing of carbonaceous and low-alloyed steels with high resistance against local corrosion based on physical-chemical methods of forecasting of non-metal inclusions, Cand. Sci. (Eng.) Dissertation, Moscow, 2012.

  33. Kazakov, A.A., Kovalev, P.V., Ryaboshuk, S.V., et al., Analysis of thermotemporal nature of non-metal inclusions to improve metallurgical quality of high-strength pipe steels, Chern. Met., 2009, no. 12, pp. 5–11.

  34. Kazakov, A.A., Kovalev, P.V., Ryaboshuk, S.V., et al., Controlling the formation of non-metal inclusions in production of converter steel, Chern. Met., 2014, no. 34, pp. 43–48.

  35. Safronov, A.A., Prilukov, S.B., Tazetdinov, V.I., and Torokhov, G.V., Comparison of the nitrogen content in ladle sample and finished products, Stal’, 2014, no. 12, pp. 29–31.

  36. Jung, I.-H., Decterov, S.A., and Pelton, A.D., Computer applications of thermodynamic databases to inclusion engineering, ISIJ Int., 2004, vol. 44, no. 3, pp. 527–536.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Safronov.

Additional information

Translated by Bernard Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safronov, A.A., Dub, V.S., Orlov, V.V. et al. Regulating the Formation of Al2O3–CaO–MgO Inclusions in Pipe-Steel Production. Steel Transl. 49, 123–130 (2019). https://doi.org/10.3103/S0967091219020128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091219020128

Keywords:

Navigation