Skip to main content
Log in

Survey of Low-Power Wireless Network Technologies for the Internet of Things

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

A large number of different low-power wireless network technologies exist, including IEEE 802.15.4, Bluetooth Low Energy, multiple protocol standards of WiFi (IEEE 802.11), Near Field Communication (NFC), and LoRa. Given this number of competing technologies, the selection of the best one for a new project is not trivial. This paper aims to help Internet of Things (IoT) practitioners in this task. To this end, we illuminate the underlying technical differences between these state-of-the-art wireless solutions through their assessment and brief analysis. We quantify and compare their latency, throughput and overhead, as well as overview their main characteristics such as frequency bands, bandwidth, medium access methods, and packet sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. Naimat, A., The Internet of Things Market: A Data-Driven Analysis of Companies Developing and Adopting IoT Technology, 2014. https://info.talend.com/rs/talend/images/WP_EN_TLD_OReilly_IOT_Market.pdf.

  2. Friesen, M.R. and McLeod, R.D., Bluetooth in intelligent transportation systems: A survey, Int. J. Intelligent Transp. Syst. Res., 2015, vol. 13, no. 3, pp. 143–153.

    Article  Google Scholar 

  3. Barkovskis, N., Salmins, A., Ozols, K., Garcıa, M.A.M., and Ayuso, F.P., WSN based on accelerometer, GPS and RSSI measurements for train integrity monitoring, 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT), IEEE, 2017, pp. 0662–0667.

  4. Elsts, A., Fafoutis, X., Oikonomou, G., Piechocki, R., and Craddock, I., TSCH networks for health IoT: Design, evaluation, and trials in the Wild, ACM Trans. Internet Things, 2020, vol. 1, no. 2, pp. 1–27.

    Article  Google Scholar 

  5. Yaqoob, I., Hashem, I.A.T., Mehmood, Y., Gani, A., Mokhtar, S., and Guizani, S., Enabling communication technologies for smart cities, IEEE Commun. Mag., 2017, vol. 55, no. 1, pp. 112–120.

    Article  Google Scholar 

  6. Han, D.-M. and Lim, J.-H., Smart home energy management system using IEEE 802.15.4 and ZigBee, IEEE Trans. Consum. Electron., 2010, vol. 56, no. 3, pp. 1403–1410.

    Article  Google Scholar 

  7. Rizzi, M., Ferrari, P., Flammini, A., Sisinni, E., and Gidlund, M., Using LoRa for industrial wireless networks, 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS), IEEE, 2017, pp. 1–4.

  8. Cech, M., Beltman, A.-J., and Ozols, K., I-MECH-Smart system integration for mechatronic applications, 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, 2019, pp. 843–850.

  9. Nordic Semiconductors, nRF52840 Product Specification v1.1, 02 2019. https://infocenter.nordicsemi.com/ pdf/nRF52840 PSv1.1.pdf.

  10. ITU, Radio Regulations, chap. II: Frequencies, sect. IV: Table of Frequency Allocations, 2016.

  11. Kivimäki, A., Wireless Telecommunication Standardization Processes—Actors’ Viewpoint, Oulu: Oulun Yliopisto, 2007.

    Google Scholar 

  12. Harney, A. and O’Mahony, C., Wireless short-range devices: Designing a global license-free system for frequencies <1 GHz, Analog Dialogue, 2006, vol. 40, no. 1, pp. 18–22.

    Google Scholar 

  13. Coskun, V., Ozdenizci, B., and Ok, K., A survey on near field communication (NFC) technology, Wireless Pers. Commun., 2013, vol. 71, no. 3, pp. 2259–2294.

    Article  Google Scholar 

  14. Augustin, A., Yi, J., Clausen, T., and Townsley, W.M., A study of LoRa: Long range & low power networks for the Internet of Things, Sensors, 2016, vol. 16, no. 9, p. 1466.

    Article  Google Scholar 

  15. Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANS), IEEE, 2011.

  16. Bluetooth SIG., Bluetooth Core Specification 5.0., vol. 6: Low Energy Controller, 2016.

    Google Scholar 

  17. IEEE 802.11 Working Group et al., Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-Speed Physical Layer Extension in the 2.4 GHz Band, ANSI/IEEE, 1999.

  18. IEEE 802.11 Working Group, IEEE Std. 802.11g. Supplement to Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)Specifications: Higher-Speed Physical Layer Extensions in the 2.4 GHz Band, IEEE, 2003.

  19. IS Association et al., 802.11-2012-IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks—Specific Requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE, 2012.

    Google Scholar 

  20. Olivieri, S., An Investigation of Security in Near Field Communication Systems, Worcester Polytech. Inst., 2015.

    Google Scholar 

  21. Standard ECMA-340: Near Field Communication Interface and Protocol (NFCIP-1), ECMA International, 2013.

  22. Bor, M. and Roedig, U., LoRa transmission parameter selection, 2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS), IEEE, 2017, pp. 27–34.

  23. Abbas, M.J., Awais, M., and Haq, A.U., Comparative analysis of wideband communication techniques: Chirp spread spectrum and direct sequence spread spectrum, 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), IEEE, 2018, pp. 1–6.

  24. Sornin, N., Luis, M., Eirich, T., Kramp, T., and Hersent, O., LoRaWAN Specification 1.0, LoRa Alliance, 2015.

    Google Scholar 

  25. Bankov, D., Khorov, E., and Lyakhov, A., On the limits of LoRaWAN channel access, 2016 International Conference on Engineering and Telecommunication (EnT), IEEE, 2016, pp. 10–14.

  26. Ferrari, P., Flammini, A., Rizzi, M., Sisinni, E., and Gidlund, M., On the evaluation of LoRaWAN virtual channels orthogonality for dense distributed systems, 2017 IEEE International Workshop on Measurement and Networking (M&N), IEEE, 2017, pp. 1–6.

  27. Loy, M., Karingattil, R., and Williams, L., ISM-Band and Short Range Device Regulatory Compliance Overview, Texas Instrum., 2005.

    Google Scholar 

  28. IEEE Standard for Local and Metropolitan Area Networks—Part 15.4. IEEE Std 802.15.4-2015, IEEE, 2015.

  29. Kastner, W., Reinisch, C., and Lukas, K., IEEE 802.15.4 MAC API, 2008.

  30. Latre, B., De Mil, P., Moerman, I., Van Dierdonck, N., Dhoedt, B., and Demeester, P., Maximum throughput and minimum delay in IEEE 802.15.4, International Conference on Mobile Ad-Hoc and Sensor Networks, Springer, 2005, pp. 866–876.

  31. Henty, B.E., A Brief Tutorial on the PHY and MAC Layers of the IEEE 802.11b Standard, White Paper, Intersil, 2001.

  32. Ho, M.-J., Wang, J., Shelby, K., and Haisch, H., IEEE 802.11 g OFDM WLAN throughput performance, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No. 03CH37484), IEEE, 2003, vol. 4, pp. 2252–2256.

  33. Gomez, C., Oller, J., and Paradells, J., Overview and evaluation of Bluetooth Low Energy: An emerging low-power wireless technology, Sensors, 2012, vol. 12, no. 9, pp. 11734–11753.

    Article  Google Scholar 

  34. Yin, J., Yang, Z., Cao, H., Liu, T., Zhou, Z., and Wu, C., A survey on Bluetooth 5.0 and mesh: New milestones of IoT, ACM Trans. Sensor Networks, 2019, vol. 15, no. 3, pp. 1–29.

    Google Scholar 

  35. Bhoyar, R., Ghonge, M., and Gupta, S., Comparative study on IEEE standard of wireless LAN/Wi-Fi 802.11 a/b/g/n, Int. J. Adv. Res. Electron. Commun. Eng., 2013, vol. 2, no. 7, pp. 687–691.

    Google Scholar 

  36. Tsao, S.-L. and Huang, C.-H., A survey of energy efficient MAC protocols for IEEE 802.11 WLAN, Comput. Commun., 2011, vol.34, no. 1, pp. 54–67.

    Article  Google Scholar 

  37. Siekkinen, M., Hiienkari, M., Nurminen, J.K., and Nieminen, J., How low energy is Bluetooth Low Energy? Comparative measurements with ZigBee/802.15.4, 2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), IEEE, 2012, pp. 232–237.

  38. De Guglielmo, D., Brienza, S., and Anastasi, G., IEEE 802.15.4e: A survey, Comput. Commun., 2016, vol. 88, pp. 1–24.

    Article  Google Scholar 

  39. Sundaram, J.P.S., Du, W., and Zhao, Z., A survey on LoRa networking: Research problems, current solutions, and open issues, IEEE Commun. Surv. Tutorials, 2019, vol. 22, no. 1, pp. 371–388.

    Article  Google Scholar 

  40. Margelis, G., Piechocki, R., Kaleshi, D., and Thomas, P., Low throughput networks for the IoT: Lessons learned from industrial implementations, 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), IEEE, 2015, pp. 181–186.

  41. Coskun, V., Ozdenizci, B., and Ok, K., A survey on near field communication (NFC) technology, Wireless Pers. Commun., 2013, vol. 71, no. 3, pp. 2259–2294.

    Article  Google Scholar 

  42. Xu, L.D., He, W., and Li, S., Internet of Things in industries: A survey, IEEE Trans. Ind. Inf., 2014, vol. 10, no. 4, pp. 2233–2243.

    Article  Google Scholar 

Download references

Funding

The research leading to these results has been supported by the ECSEL Joint Undertaking under grant agreement no. 737453 (I-MECH) [8]. This Joint Undertaking receives support from the European Union Horizon 2020 research and innovation program and the ECSEL member states.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaspars Ozols or Atis Elsts.

Ethics declarations

The authors declare no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niklavs Barkovskis, Ozols, K. & Elsts, A. Survey of Low-Power Wireless Network Technologies for the Internet of Things. Aut. Control Comp. Sci. 55, 177–194 (2021). https://doi.org/10.3103/S0146411621020024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411621020024

Navigation