Skip to main content
Log in

The Evidence of Cumulate Crystallization and Local Development of the Eclogite Facies Metamorphism in Olivine Gabbro of the Marun-Key Complex (Polar Urals, Russia)

  • SHORT COMMUNICATIONS
  • Published:
Moscow University Geology Bulletin Aims and scope Submit manuscript

Abstract—

This work presents the results of a detailed petrological study of olivine gabbro transformed to a different extent during the eclogite facies metamorphism. The textural features of cumulate crystallization in the rock at the magmatic stage are presented. Due to the significant transformations during eclogite facies metamorphism plagioclases were replaced by a fine-grained aggregate of high-pressure mineral paragenesis. Corona textures are developed along the boundaries of plagioclase (felsic) domains at the contacts with (Fe, Mg)-minerals during eclogite facies events. Mineral thermobarometry and phase equilibrium modeling provide PT metamorphic conditions in relatively narrow temperature and pressure ranges: T = 680 ± 60°C and Р = 2.2 ± 0.4 GPa. This is in a good agreement with the previously established formation conditions of eclogites and garnet–amphibole peridotite from the same complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Brey, G.P. and Kohler, T., Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers, J. Petrol., 1990, vol. 31, no. 6, pp. 1353–1378.

    Article  Google Scholar 

  2. Carswell, D.A. and Harley, S.L., Mineral barometry and thermometry, in Eclogite Facies Rocks, Carswell, D.A., Ed., Blackie & Sous, Glasgow. 1990, pp.83–110.

    Book  Google Scholar 

  3. Connolly, J.A., Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction Czone decarbonation, Earth Planet. Sci. Lett., 2005, vol. 236, nos. 1–2, pp. 524–541.

    Article  Google Scholar 

  4. Davydova, V.V., Perchuk, A.L., and Stoeckhert, B., Petrology of coronite from the Bergen Arcs Complex, Norway, Moscow Univ. Geol. Bull., 2009, vol. 64, no. 3, pp. 166–176.

    Article  Google Scholar 

  5. Engvik, A.K., Austrheim, H., and Erambert, M., Interaction between fluid flow, fracturing and mineral growth during eclogitization, an example from the Sunnfjord Area, Western Gneiss Region, Norway, Lithos, 2001, vol. 57, no. 2–3, pp. 111–141.

    Article  Google Scholar 

  6. Faryad, S.W., Jedlicka, R., Collett, S., Eclogite facies rocks of the Monotonous unit, clue to Variscan suture in the Moldanubian Zone (Bohemian Massif), Lithos, 2013, vol. 179, pp. 353–363.

    Article  Google Scholar 

  7. Glodny, J., Austrheim, H., Molina, J.F., Rusin, A.I., and Seward, D., Rb/Sr record of fluid-rock interaction in eclogites: The Marun-Keu complex, Polar Urals, Russia, Geochim. Cosmochim. Acta, 2003, vol. 67, no. 22, pp. 4353–4371.

    Article  Google Scholar 

  8. Glodny, J., Pease, V., Montero, P., Austrheim, H., and Rusin, A.I., Protolith ages of eclogites, Marun-Keu Complex, Polar Urals, Russia: implications for the pre-and early Uralian evolution of the northeastern European continental margin, Geol. Soc. London, Mem., 2004, vol. 30, no. 1, pp. 87–105.

    Google Scholar 

  9. Griffin, W.L. and Heier, K.S., Petrological implications of some corona structures, Lithos, 1973, vol. 86, no. 4, pp. 315–335.

    Article  Google Scholar 

  10. Harley, S.L., An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene, Contrib. Mineral. Petrol., 1984, vol. 86, no. 4, pp. 359–373.

    Article  Google Scholar 

  11. Holland, T. and Powell, R., Thermodynamics of order-disorder in minerals: II. Symmetric formalism applied to solid solutions, Am. Mineral., 1996, vol. 81, nos. 11–12, pp. 1425–1437.

    Article  Google Scholar 

  12. Holland, T.J.B. and Powell, R., An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 1998, vol. 16, no. 3, pp. 309–343.

    Article  Google Scholar 

  13. Holland, T.J.B. and Powell, R., An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids, J. Metamorph. Geol., 2011, vol. 29, no. 3, pp. 333–383.

    Article  Google Scholar 

  14. Kulikova, K.V., Rare-earth elements in rocks and minerals from ecologites of the Slyudyanaya Gorka area (Marun-Keu Range, Polar Urals), in Petrologiya i mineralogiya severa Urala i Timana (Petrology and Mineralogy of the Northern Urals and Timan), Syktyvkar, 2005, pp. 115–124.

  15. Larikova, T.L. and Zaraisky, G.P., Experimental modelling of corona textures, J. Metamorph. Geol., 2009, vol. 27, no. 2, pp. 139–151.

    Article  Google Scholar 

  16. Lindsley, D.H., Pyroxene thermometry, Am. Mineral., 1983, vol. 68, nos. 5–6, pp. 477–493.

    Google Scholar 

  17. Liu, Y.Y., Perchuk, A.L., and Philippot, P., Eclogites from the Marun-Keu Complex, Polar Urals, Russia: a record of hot subduction and sub-isothermal exhumation, Spec. Publ.—Geol. Soc. London, 2018, vol. 474, p. SP474-6. https://doi.org/10.1144/SP474.6

    Article  Google Scholar 

  18. Liu, I., Perchuk, A.L., and Ariskin, A.A., High Pressure Metamorphism in the Peridotitic Cumulate of the Marun-Keu Complex, Polar Urals, Petrology, 2019, vol. 27, no. 2, pp. 124–145.

    Article  Google Scholar 

  19. Molina, J.F., Austrheim, H., Glodny, J., and Rusin, A., The eclogites of the Marun–Keu complex, Polar Urals (Russia): fluid control on reaction kinetics and metasomatism during high P metamorphism, Lithos, 2002, vol. 61, no. 1, pp. 55–78.

    Article  Google Scholar 

  20. Morimoto, N., Nomenclature of pyroxenes, Mineral. Petrol., 1988, vol. 39, no. 1, pp. 55–76.

    Article  Google Scholar 

  21. Nickel, K.G. and Green, D.H., Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds, Earth Planet. Sci. Lett., 1985, vol. 73, no. 1, pp. 158–170.

    Article  Google Scholar 

  22. Perchuk, A.L., Yapaskurt, V.O., and Podlesskii, S.K., Genesis and Exhumation Dynamics of Eclogites in the Kokchetav Massif near Mount Sulu-Tyube, Kazakhstan, Geochem. Int., 1998, vol. 36, no. 9, pp. 877–885.

    Google Scholar 

  23. Perchuk, A.L. and Morgunova, A.A., Variable P–T paths and HP–UHP metamorphism in a Precambrian terrane, Gridino, Russia: Petrological evidence and geodynamic implications, Gondwana Res., 2014, vol. 25, no. 2, pp. 614–629.

    Article  Google Scholar 

  24. Selyatitskii, A.Yu. and Kulikova, K.V., The first evidence of UHP metamorphism in the Polar Urals (Russia), Dokl. Earth Sci., 2017, vol. 476, pp. 1222–1225.

    Article  Google Scholar 

  25. Shatskii, V.S., Simonov, V.A., Yagoutz, E., Koz’menko, O.A., and Kurenkov, S.A., New data on the age of eclogites from the Polar Urals, Dokl. Earth Sci., 2000, vol. 371, no. 4, pp. 534–538.

    Google Scholar 

  26. Spry, A., Metamorphic Textures, Elsevier Science, 2013.

    Google Scholar 

  27. Takahashi, E., Primary magma compositions and Mg/Fe ratios of their mantle residues along Mid Atlantic Ridge 29° N to 73° N, Tech. Rep. ISEI, Ser. A, 1987, vol. 9, pp. 1–14.

    Google Scholar 

  28. Taylor, W.R., An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite, Neues Jahrb. Mineral., Abh., 1998, pp. 381–408.

  29. Udovkina, N.G., Eklogity Polyarnogo Urala (Eclogites of the Polar Urals), Moscow: Nauka, 1971.

  30. Udovkina, N.G., Eklogity SSSR (Eclogites of the USSR), Moscow: Nauka, 1985.

  31. Ulyasheva, N.S. and Ronkin, Yu.L., Chemical composition and geodynamic settings of the formation of protoliths of amphibolites and garnet eclogites of the Marun-Keu Complex, Polar Urals, Izv. Komi NTs UrO RAN, Syktyvkar, 2014, vol. 1, pp. 71–79.

    Google Scholar 

  32. Wager, L.R., Brown, G.M., and Wadsworth, W.J., Types of igneous cumulates, J. Petrol., 1960, vol. 1, no. 1, pp. 73–85.

    Article  Google Scholar 

  33. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, no. 1, pp. 185–187.

    Article  Google Scholar 

  34. Zhang, R.Y. and Liou, J.G., Partial transformation of gabbro to coesite- bearing eclogite from Yangkou, the Sulu terrain, Eastern China, J. Metamorph. Geol., 1997, vol. 15, no. 2, pp. 183–202.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to E.V. Guseva for assistance in analytical studies and A.A. Ariskin for consultations on cumulate textures.

Funding

Equipment purchased within the framework of the Moscow University Development Program was used for our studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Y. Liu, A. L. Perchuk or N. G. Zinovieva.

Additional information

Translated by D. Voroshchuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y.Y., Perchuk, A.L. & Zinovieva, N.G. The Evidence of Cumulate Crystallization and Local Development of the Eclogite Facies Metamorphism in Olivine Gabbro of the Marun-Key Complex (Polar Urals, Russia). Moscow Univ. Geol. Bull. 74, 321–331 (2019). https://doi.org/10.3103/S0145875219030050

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0145875219030050

Keywords:

Navigation