Skip to main content
Log in

High Pressure Metamorphism in the Peridotitic Cumulate of the Marun-Keu Complex, Polar Urals

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The Marun-Keu Complex of high-pressure rocks comprises granitoids, gneisses schists, gabbroids, and peridotites, which are unevenly and variably metamorphosed to the eclogite facies. A representative sample of garnet–amphibole lherzolite from the Mount Slyudyanaya area shows a cumulate texture and well preserved magmatic mafic minerals (olivine and pyroxenes) but practically no preserved plagioclase. The eclogite-facies metamorphism produced corona textures of newly formed minerals: amphibole, garnet, orthopyroxene, and spinel. The metamorphic parameters of the garnet–amphibole lherzolite were estimated by geothermobarometry and by modeling phase equilibria at Р ~ 2.1 GPa and T ~ 640–740°C and are well consistent with our earlier estimate of the formation conditions of eclogites in the area. Computer simulation of the crystallization process of the gabbroic melt with the COMAGMAT program package, using literature data on the composition of the least altered plagioclase lherzolites and gabbroids from the Marun-Keu Complex, shows that the mafic and ultramafic rocks are genetically interrelated: they crystallized in a single magmatic chamber. According to the modeling, the origin of the cumulate texture in the lherzolite was controlled by the peritectic reaction Ol + meltOpx at a pressure of 0.7–0.8 GPa and a temperature of 1255–1268°C. Differences between thermodynamic parameters in the eclogites and garnet peridotites are discussed within the scope of a tectonic model proposed for subduction and subsequent exhumation of the Baltica paleocontinent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

Notes

  1. In fact, we conducted preliminary calculations within a broader pressure range of 1 atm to 1 GPa.

REFERENCES

  1. Ariskin, A.A., Frenkel, M.Y., Barmina, G.S., and Nielsen, R.L., COMAGMAT: a Fortran program to model magma differentiation processes, Comp. Geosci., 1993, vol. 19, pp. 1155–1170.

    Article  Google Scholar 

  2. Ariskin, A.A. and Barmina, G.S., COMAGMAT: development of a magma crystallization model and its petrological applications, Geochem. Int., 2004, vol. 42, no. Suppl. 1, pp. S1–S157.

  3. Austrheim, H., Eclogitization of lower crustal granulites by fluid migration through shear zones, Earth Planet. Sci. Lett., 1987, vol. 81, no. 2, pp. 221–232.

    Article  Google Scholar 

  4. Barnes, S.J. and Roeder, P.L., The range of spinel compositions in terrestrial mafic and ultramafic rocks, J. Petrol., 2001, vol. 42, no. 12, pp. 2279–2302.

    Article  Google Scholar 

  5. Beard, J.S., Characteristic mineralogy of arc-related cumulate gabbros: implications for the tectonic setting of gabbroic plutons and for andesite genesis, Geology, 1986, vol. 14, no. 10, pp. 848–851.

    Article  Google Scholar 

  6. Bohlen, S.R. and Boettcher, A.L., The quartz–coesite transformation: a precise determination and the effects of other components, J. Geophys. Res. Solid Earth, 1982, vol. 87, no. B8, pp. 7073–7078.

    Article  Google Scholar 

  7. Brey, G.P. and Kohler, T., Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers, J. Petrol., 1990, vol. 31, no. 6, pp. 1353–1378.

    Article  Google Scholar 

  8. Brueckner, H.K. and Medaris, L.G., A general model for the intrusion and evolution of “mantle” garnet peridotites in high-pressure and ultra-high-pressure metamorphic terranes, J. Metamorph. Geol., 2000, vol. 18, no. 2, pp. 123–133.

    Article  Google Scholar 

  9. Brueckner, H.K., Carswell, D.A., Griffin, W.L., et al., The mantle and crustal evolution of two garnet peridotite suites from the western gneiss region, Norwegian Caledonides: an isotopic investigation, Lithos, 2010, vol. 117, no. 1, pp. 1–19.

    Article  Google Scholar 

  10. Chemenda, A.I., Mattauer, M., and Bokun, A.N., Continental subduction and a mechanism for exhumation of high-pressure metamorphic rocks: new modelling and field data from Oman, Earth Planet. Sci. Lett., 1996, vol. 143, nos. 1–4, pp. 173–182.

    Article  Google Scholar 

  11. Connolly, J.A., Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation, Earth Planet. Sci. Lett., 2005, vol. 236, nos. 1–2, pp. 524–541.

    Article  Google Scholar 

  12. Dobretsov, M.L. and Sobolev, N.V., Glaucophane schists and eclogites in the folded systems of northern Asia, Ofioliti, 1984, vol. 9, pp. 401–423.

    Google Scholar 

  13. Fumagalli, P. and Klemme, S., Mineralogy of the Earth: Phase Transitions and Mineralogy of the Upper Mantle, Schubert, G., Ed., Treatise on Geophysics, 2nd Ed., Oxford: Elsevier, 2015.

  14. Glodny, J., Austrheim, H., Molina, J.F., et al., Rb/Sr record of fluid-rock interaction in eclogites: the Marun-Keu Complex, Polar Urals, Russia, Geochim. Cosmochim. Acta, 2003, vol. 67, no. 22, pp. 4353–4371.

    Article  Google Scholar 

  15. Glodny, J., Pease, V., Montero, P., et al., Protolith ages of eclogites, Marun-Keu Complex, Polar Urals, Russia: implications for the pre-and early Uralian evolution of the northeastern European continental margin, Geol. Soc. London, Mem., 2004, vol. 30, no. 87–105.

  16. Holland, T. and Powell, R., Thermodynamics of order-disorder in minerals: II. Symmetric formalism applied to solid solutions, Am. Mineral., 1996, vol. 81, nos. 11–12, pp. 1425–1437.

    Article  Google Scholar 

  17. Holland, T.J.B. and Powell, R., An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 1998, vol. 16, no. 3, pp. 309–343.

    Article  Google Scholar 

  18. Holland, T.J.B. and Powell, R., An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids, J. Metamorph. Geol., 2011, vol. 29, no. 3, pp. 333–383.

    Article  Google Scholar 

  19. Krebs, M., Maresch, W.V., Schertl, H.P., et al., The dynamics of intra-oceanic subduction zones: a direct comparison between fossil petrological evidence (Rio San Juan Complex, Dominican Republic) and numerical simulation, Lithos, 2008, vol. 103, nos. 1–2, pp. 106–137.

    Article  Google Scholar 

  20. Kulikova, K.V., Rare-earth elements in rocks and minerals from ecologites of the Slyudyanaya Gorka area (Marun-Keu Range, Polar Urals), in Petrologiya i mineralogiya severa Urala i Timana (Petrology and Mineralogy of the Northern Urals and Timan), Syktyvkar, 2005, pp. 115–124.

  21. Leake, B.E., Woolley, A.R., Arps, C.E., et al., Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names, Mineral. Mag., 1997, vol. 61, no. 2, pp. 295–321.

    Article  Google Scholar 

  22. Liu, Y.Y., Perchuk, A.L., and Philippot, P., Eclogites from the Marun-Keu Complex, Polar Urals, Russia: a record of hot subduction and sub-isothermal exhumation, Geol. Soc. London: Sp. Publ., 2018, vol. 474. https://doi.org/10.1144/SP474.6

  23. Medaris, L.G., Garnet peridotites in Eurasian high-pressure and ultrahigh-pressure terranes: a diversity of origins and thermal histories, Int. Geol. Rev., 1999, vol. 41, no. 9, pp. 799–815.

    Article  Google Scholar 

  24. Molina, J.F., Austrheim, H., Glodny, J., and Rusin, A., The eclogites of the Marun-Keu Complex, Polar Urals (Russia): fluid control on reaction kinetics and metasomatism during high P metamorphism, Lithos, 2002, vol. 61, no. 1, pp. 55–78.

    Article  Google Scholar 

  25. Molina, J.F., Poli, S., Austrheim, H., et al., Eclogite-facies vein systems in the Marun-Keu Complex (Polar Urals, Russia): textural, chemical and thermal constraints for patterns of fluid flow in the lower crust, Contrib. Mineral. Petrol., 2004, vol. 147, no. 4, pp. 484–504.

    Article  Google Scholar 

  26. Nickel, K.G. and Green, D.H., Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds, Earth Planet. Sci. Lett., 1985, vol. 73, no. 1, pp. 158–170.

    Article  Google Scholar 

  27. Perchuk, A.L., Davydova, V.V., Burkhard, M., et al., Modification of mineral inclusions in garnet under high-pressure conditions: experimental simulation and application of the carbonate–silicate rocks of the Kokchetav massif, Russ. Geol. Geophys., 2009, vol. 50, no. 12, pp. 1153–1168.

    Article  Google Scholar 

  28. Perchuk, A.L. and Morgunova, A.A., Variable P-T paths and HP–UHP metamorphism in a Precambrian terrane, Gridino, Russia: petrological evidence and geodynamic implications, Gondwana Res., 2014, vol. 25, no. 2, pp. 614–629.

    Article  Google Scholar 

  29. Perchuk, L.L., Gerya, T.V., Parfenova, O.V., and Podgornova, S.T., Metamorphic rocks of the Samerberg Complex, Eastern Alps: 2. P–T paths and the problem of a geodynamic model, Petrology, 2007, vol. 15, no. 4, pp. 369–385.

    Article  Google Scholar 

  30. Perchuk, L.L., Tokarev, D.A., Parfenova, O.V., and Podgornova, S.T., Metamorphic rocks of the Samerberg Complex, Eastern Alps: 1. Petrography, Petrology, 2004, vol. 12, no. 2, pp. 93–133.

    Google Scholar 

  31. Puchkov, V.N., Geologiya Urala i Priural’ya (aktual’nye voprosy stratigrafii, tektoniki, geodinamiki i metallogenii) (Geology of the Urals and Cis-Urals: Actual Problems of Stratigraphy, Tectonics, Geodynamics, and Metallogeny), Ufa: Dizain Poligraf Servis, 2010.

  32. Reverdatto, V.V., Selyatitskii, A.Yu., and Carswell, D., Geochemical distinctions between “crustal” and mantle-derived peridotites/pyroxenites in high/ultrahigh pressure metamorphic complexes, Russ. Geol. Geophys., 2008, vol. 49, no. 2, pp. 73–90.

    Article  Google Scholar 

  33. Savelieva, G.N. and Nesbitt, R.W., A synthesis of the stratigraphic and tectonic setting of the Uralian ophiolites, J. Geol. Soc., 1996, vol. 153, no. 4, pp. 525–537.

    Article  Google Scholar 

  34. Savelyeva, G.N. and Suslov, P.V., Structure and composition of mantle peridotites at the boundary with crustal complexes of ophiolites in the Syumkeu massif, Polar Urals, Geotectonics, 2014, vol. 48, no. 5, pp. 347–358.

    Article  Google Scholar 

  35. Scambelluri, M., Hermann, J., Morten, L., and Rampone, E., Melt-versus fluid-induced metasomatism in spinel to garnet wedge peridotites (Ulten Zone, eastern Italian Alps): clues from trace element and Li abundances, Contrib. Mineral. Petrol., 2006, vol. 151, no. 4, p. 372.

    Article  Google Scholar 

  36. Selyatitskii A.Yu., Kulikova K.V. The First evidence of UHP metamorphism in the Polar Urals (Russia), Dokl. Earth Sci., 2017, vol. 476, pp. 1222–1225.

    Article  Google Scholar 

  37. Shatskii, V.S., Simonov, V.A., Yagoutz, E., et al., New data on the age of eclogites from the Polar Urals, Dokl. Earth Sci., 2000, vol. 371A, pp. 534–538.

    Google Scholar 

  38. Shmelev, V.R., Mantle ultrabasites of ophiolite complexes in the Polar Urals: petrogenesis and geodynamic environments, Petrology, 2011, vol. 19, no. 6, pp. 618–640.

    Article  Google Scholar 

  39. Sobolev, N.V., Dobretsov, N.L., Bakirov, A.B., and Shatsky, V.S., Eclogites from various types of metamorphic complexes in the USSR and the problems of their origin, Geol. Soc. Am. Mem., 1986, vol. 164, pp. 349–364.

    Google Scholar 

  40. Song, S., Niu, Y., Su, L., Zhang, C., and Zhang, L., Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: the example of the North Qaidam UHPM belt, NW China, Earth-Sci. Rev., 2014, vol. 129, pp. 59–84.

    Article  Google Scholar 

  41. Taylor, W.R., An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite, Neues Jahrb. Mineral.-Abh., 1998, vol.172, pp. 381–408.

    Google Scholar 

  42. Till, C.B., Grove, T.L., and Withers, A.C., The beginnings of hydrous mantle wedge melting, Contrib. Mineral. Petrol., 2012, vol. 163, no. 4, pp. 669–688.

    Article  Google Scholar 

  43. Tishin, P.A., Petrology of Eclogites of the Marun-Key Range, Polar Urals, Candidate’s (Geol.-Min.) Dissertation, Tomsk: TGU, 1999.

  44. Udovkina, N.G. Eklogity Polyarnogo Urala (Eclogites of the Polar Urals), Moscow: Nauka, 1971.

  45. Udovkina, N.G., Eklogity SSSR (Eclogites of the USSR), Moscow: Nauka, 1985.

  46. Ulyasheva, N.S. and Ronkin, Yu.L., Chemical composition and geodynamic settings of the formation of protoliths of amphibolites and garnet eclogites of the Marun-Keu Complex, Polar Urals, Izv. Komi NTs UrO RAN, 2014, vol. 1, pp. 71–79.

    Google Scholar 

  47. Wager, L.R., Brown, G.M., and Wadsworth, W.J., Types of igneous cumulates, J. Petrol., 1960, vol. 1, no. 1, pp. 73–85.

    Article  Google Scholar 

  48. Zhang, R.Y., Liou, J.G., and Ernst, W.G., The Dabie-Sulu continental collision zone: a comprehensive review, Gondwana Res., 2009, vol. 16, no. 1, pp. 1–26.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank E.V. Guseva and V.O. Yapaskurt (of the Moscow State University) for help with the analytical work. We highly appreciate discussion of our unpublished materials with A.Yu. Selyatitskii. We are thankful to S.T. Podgornova for help with preparing the manuscript. The reviewers S.A. Silantyev (Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences) and particularly L.Ya. Aranovich (Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences) are thanked for valuable comments.

Funding

This study was carried out using equipment purchased under the Program for the Development of the Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Perchuk.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y.Y., Perchuk, A.L. & Ariskin, A.A. High Pressure Metamorphism in the Peridotitic Cumulate of the Marun-Keu Complex, Polar Urals. Petrology 27, 124–145 (2019). https://doi.org/10.1134/S0869591119020061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591119020061

Keywords:

Navigation