Skip to main content
Log in

Ultrastructure of Leaf Mesophyll Cells of Alyssum desertorum L. under Soil Flooding

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

For the first time, the effect of 5- and 10-day soil flooding on the ultrastructure of the leaf mesophyll cells of the psammophyte desert madwort (Alyssum desertorum L.) was investigated. The seeds for the experiments were collected from plants of dry sandy areas of the gully slopes of the ravine forest in the steppe zone of the Dnipropetrovsk oblast. It is shown that a characteristic feature of the leaf photosynthetic cells of this species is the presence of single and large, up to 6 pm, peroxisomes, which are in close contact with chloroplasts and mitochondria, playing a key role in photorespiration. The general organization of palisade parenchyma cells on days 5 and 10 of soil flooding is similar to that in the control. A slight decrease in the size of peroxisomes on day 5 of flooding and its increase on day 10 and more often formation of multivesicular structures (assembly of endomembranes) in the vacuole, which is considered as an autophagy enhancement of the cytoplasm under hypoxia, were noted. Differences in the ultrastructure of chloroplasts under the influence of soil flooding consisted in a significant, almost twofold increase in transient starch, the size and number of plastoglobules, especially on day 10, and swelling of granal and stroma thylakoids on day 10. Changes in the ultrastructure of desert madwort chloroplasts under the influence of soil flooding coincide with those of mesophytes studied in this respect. The obtained data on the chloroplast ultrastructure of desert madwort psammophyte prove the functioning of the photosynthetic apparatus in conditions of short-term soil flooding, which contributes to the survival of seedlings. The subsequent yellowing of leaves and death of plants indicates, as is assumed, the lack of systemic adaptation, primarily metabolic, that is, the transition to anaerobic metabolism, in this species to long-term hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Akyol, Y., Kocabas, O., Bozdag, B., Minareci, E., and Ozdemir, C., Vascular anatomy of Alyssum alyssoides and A. desertorum (Brassicaceae) from Eastern Anatolia, Turkey, Phytol. Canica, 2017, vol. 23, pp. 3–6.

    Google Scholar 

  2. Bailey-Serres, J. and Voesenek, L., Flooding stress: acclimations and genetic diversity, Ann. Rev. Plant Biol., 2008, vol. 59, pp. 313–339. https://doi.org/10.1146/annurev.arplant.59.032607.092752

    Article  CAS  Google Scholar 

  3. Bailey-Serres, J., Lee, S., and Brinton, E., Waterproofing crops: effective flooding survival strategies, Plant Physiol., 2012, vol. 160, pp. 1698–1709. https://doi.org/10.1104/pp.112.208173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gravatt, D.A. and Kirby, C.J., Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding, Tree Physiol., 1998, vol. 18, pp. 411–417. https://doi.org/10.1093/treephys/18.6.411

    Article  PubMed  Google Scholar 

  5. Gu, L., Grodzinski, B., Han, J., et al., Granal thylakoid structure and function: explaining an enduring mystery of higher plants, New Phytol., 2022, vol. 236, pp. 319–329. https://doi.org/10.1111/nph.18371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hirabayashi, Y., Mahendran, R., Koirala, S., et al., Global flood risk under climate change, Nat. Clim. Change, 2013, vol. 3, pp. 816–821. https://doi.org/10.1038/nclimate1911

    Article  Google Scholar 

  7. Hu, J., Baker, A., Bartel, B., et al., Plant peroxisomes: biogenesis and function, Plant Cell, 2012, vol. 24, no. 6, pp. 2279–2303. https://doi.org/10.1105/tpc.112.096586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iljinska, A.P., Species of the genus Alyssum L. (sect. Alyssum) in the flora of Ukraine, Ukr. Bot. J., 2005, vol. 62, no. 2, pp. 223–234.

    Google Scholar 

  9. Jansen, R.L.M., Santana-Molina, C., van den Noort, M., Devos, D.P., and van der Klei, I.J., Comparative genomics of peroxisome biogenesis proteins: making sense of the PEX proteins, Front. Cell Dev. Biol., 2021, vol. 9, p. 654163. https://doi.org/10.3389/fcell.2021.654163

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kanai, M., Higuchi, K., Hagihara, T., et al., Common reed produces starch granules at the shoot base in response to salt stress, New Phytol., 2007, vol. 176, pp. 572–580.

    Article  CAS  PubMed  Google Scholar 

  11. Kao, Y.T., Gonzalez, K.L., and Bartel, B., Peroxisome function, biogenesis, and dynamics in plants, Plant Physiol., 2018, vol. 176, pp. 162–177. https://doi.org/10.1104/pp.17.01050

    Article  CAS  PubMed  Google Scholar 

  12. Kirchhoff, H., Chloroplast ultrastructure in plants, New Phytol., 2019, vol. 223, pp. 565–574. https://doi.org/10.1111/nph.15730

    Article  PubMed  Google Scholar 

  13. Klymchuk, D.O., Brown, C.S., Chapman, D.K., Vorobyova, T.V., and Martyn, G.M., Cytochemical localization of calcium in soybean root cap cells in microgravity, Adv. Space Res., 2001, vol. 27, pp. 967–972.

    Article  CAS  PubMed  Google Scholar 

  14. Kreuzwieser, J. and Rennenberg, H., Molecular and physiological responses of trees to waterlogging stress, Plant Cell Environ., 2014, vol. 37, pp. 2245–2259. https://doi.org/10.1111/pce.12310

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Z., Cheng, R., Xiao, W., et al., Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense, PLoS One, 2014, vol. 9, p. e107636. https://doi.org/10.1371/journal.pone.0107636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Merchant, A., Peuke, A.D., Keitel, C., et al., Phloem sap and leaf δ13C-carbohydrates and amino acid concentrations in Eucalyptus globulus change systematically according to flooding and water deficit treatment, J. Exp. Bot., 2010, vol. 61, pp. 1785–1793. https://doi.org/10.1093/jxb/erq045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morris, J. and Brewin, P., The impact of seasonal flooding on agriculture: the spring 2012 floods in Somerset, England, J. Flood Risk Manage., 2014, vol. 7, pp. 128–140. https://doi.org/10.1111/jfr3.12041

    Article  Google Scholar 

  18. Nasrullah, A.S., Umar, M., et al., Flooding tolerance in plants: from physiological and molecular perspectives, Braz. J. Bot., 2022, vol. 45, pp. 1161–1176. https://doi.org/10.1007/s40415-022-00841-0

    Article  Google Scholar 

  19. Oikawa, K., Hayashi, M., Hayashi, Y., and Nishimura, M., Re-evaluation of physical interaction between plant peroxisomes and other organelles using live-cell imaging techniques, J. Integr. Plant Biol., 2019, vol. 61, pp. 836–852. https://doi.org/10.1111/jipb.12805

    Article  PubMed  Google Scholar 

  20. Pan, R., Jun, L., Saisai, W., and Jianping, H., Peroxisomes: versatile organelles with diverse roles in plants, New Phytol., 2020, vol. 225, pp. 1410–1427. https://doi.org/10.1111/nph.16134

    Article  PubMed  Google Scholar 

  21. Patel, P., Singh, A., Tripathi, N., et al., Flooding: abiotic constraint limiting vegetable productivity, Adv. Plants Agric. Res., 2014, vol. 1, pp. 96–103. https://doi.org/10.15406/apar.2014.01.00016

    Article  Google Scholar 

  22. Pshybytko, E., Kruk, J., Lysenko, E., et al., Environ. Exp. Bot., 2022, vol. 206. https://doi.org/10.1016/j.envexpbot.2022.105151

  23. Ren, B., Zhang, J., Dong, S., Liu, P., and Zhao, B., Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize, PloS One, 2016, vol. 11, p. e0161424

    Article  PubMed  PubMed Central  Google Scholar 

  24. Reumann, S. and Bartel, B., Plant peroxisomes: recent discoveries in functional complexity, organelle homeostasis, and morphological dynamics, Curr. Opin. Plant B-iol., 2016, vol. 34, pp. 17–26. https://doi.org/10.1016/j.pbi.2016.07.008

    Article  CAS  Google Scholar 

  25. Sharma, U., Bhatt, J., Sharma, H.M., et al., Ultrastructure, adaptability, and alleviation mechanisms of photosynthetic apparatus in plants under waterlogging: A review, Photosynthetica, 2022, vol. 60, pp. 430–444. https://doi.org/10.32615/ps.2022.033

    Article  CAS  Google Scholar 

  26. Shi, F., Pan, Z., Dai, P., et al., Effect of waterlogging stress on leaf anatomical structure and ultrastructure of Phoebe sheareri seedlings, Forests, 2023, vol. 14, no. 7, p. 1294. https://doi.org/10.3390/f14071294

    Article  Google Scholar 

  27. Takahashi, S. and Badger, M.R., Photoprotection in plants: a new light on photosystem II damage, Trends Plant Sci., 2011, vol. 16, pp. 53–60. https://doi.org/10.1016/j.tplants.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  28. Thalmann, M. and Santelia, D., Starch as a determinant of plant fitness under abiotic stress, New Phytol., 2017, vol. 214, no. 3, pp. 943–951. https://doi.org/10.1111/nph.14491

    Article  CAS  PubMed  Google Scholar 

  29. Todorova, D., Katerova, Z., Shopova, E., et al., The physiological responses of wheat and maize seedlings grown under water deficit are modulated by pre-application of auxin-type plant growth regulators, Plants, 2022, vol. 11, p. 3251. https://doi.org/10.3390/plants11233251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Topa, M.A. and Cheeseman, J.M., Carbon and phosphorus partitioning in Pinus serotina seedlings growing under hypoxic and low-phosphorus conditions, Tree Physiol., 1992, vol. 10, pp. 195–207.

    Article  CAS  PubMed  Google Scholar 

  31. Utrillas, M.J. and Alegre, L., Impact of water stress on leaf anatomy and ultrastructure in Cynodon dactylon (L.) Pers. under natural conditions, Int. J. Plant Sci., 1997, vol. 158, pp. 313–324.

    Article  Google Scholar 

  32. Van Wijk, K.J. and Kessler, F., Plastoglobuli: plastid microcompartments with integrated functions in metabolism, plastid developmental transitions, and environmental adaptation, Ann. Rev. Plant Biol., 2017, vol. 68, pp. 253–389.

    Article  CAS  Google Scholar 

  33. Vu, C.V. and Yelenosky, G., Photosnythetic responses of rough lemon and sour orange to soil flooding, chilling, and short-term temperature fluctuations during growth, Environ. Exp. Bot., 1992, vol. 32, pp. 471–477. https://doi.org/10.1016/0098-8472(92)90060-F

    Article  Google Scholar 

  34. Wample, R.L. and Davis, R.W., Effect of flooding on starch accumulation in chloroplasts of sunflower (Helianthus annus L), Plant Physiol., 1983, vol. 73, pp. 195–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan, L., Guanghui, L., Xueming, H., and Xueni, Z., Complete chloroplast genome of a spring ephemeral plant Alyssum desertorum and its implications for the phylogenetic position of the tribe Alysseae within the Brassicaceae Nordic, J. Bot., 2017, vol. 35, pp. 644–652. https://doi.org/10.1111/njb.01531

    Article  Google Scholar 

  36. Yoshioka-Nishimura, M., Close relationships between the PSII repair cycle and thylakoid membrane dynamics, Plant Cell Physiol., 2016, vol. 57, pp. 1115–1122. https://doi.org/10.1093/pcp/pcw050

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, R.D., Zhou, Y.F., Yue, Z.X., et al., Changes in photosynthesis, chloroplast ultrastructure, and antioxidant metabolism in leaves of sorghum under waterlogging stress, Photosynthetica, 2019, vol. 57, pp. 1076–1083.

    Article  CAS  Google Scholar 

  38. Zhou, J., Wan, S.W., Li, G., and Qin, P., et al., Ultrastructure changes of seedlings of Kosteletzkya virginica under waterlogging conditions, Biol. Plant., 2011, vol. 55, pp. 493–498. https://doi.org/10.1007/s10535-011-0115-6

    Article  Google Scholar 

Download references

Funding

The financing of the work was carried out within the framework of the topic of the Department of Anatomy and Cell Biology of Kholodny Institute of Botany, no. 467 “Cellular and molecular Aspects of Phenotypic Plasticity of Heliophytes, Psammophytes, and Lithophytes under Contrasting Conditions of the Water Regime.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Akimov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akimov, Y.M., Vorob’ova, T.V. Ultrastructure of Leaf Mesophyll Cells of Alyssum desertorum L. under Soil Flooding. Cytol. Genet. 58, 92–98 (2024). https://doi.org/10.3103/S0095452724020026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452724020026

Keywords:

Navigation