Skip to main content

Advertisement

Log in

Flooding tolerance in plants: from physiological and molecular perspectives

  • Biochemistry & Physiology - Review Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Submergence stress due to increased rainfalls is an agricultural problem in many areas in the world. Complete or partial submergence leads to an array of morphological, physiological and molecular changes in plants, which adversely affect plant growth and development and may lead to a drastic reduction in grain yield of many crops. The adverse effects of submergence stress can be mitigated by developing crop plants with improved submergence tolerance using various physiological and molecular approaches. For this purpose, a thorough understanding of physiological and molecular responses of plants, for improving crop to submergence, is imperative. Submergence stress affects plant growth at any developmental stage, though the impact of stress depends on the duration of submergence and species or genotype. At earlier stages, submergence stress mostly affects shoot growth, leaf area, plant–water contents and photosynthesis, while at later stages, it may adversely disturb the redox and molecular activity of plants. Furthermore, early senescence, production of reactive oxygen species (ROS) and imbalance in molecular mechanisms constitute the major plant responses to submergence stress. In order to cope with submergence stress, plants execute various mechanisms, including decrease in transpiration rate, increase in stomatal conductance and photosynthesis, scavenging of ROS, production of antioxidants and activation of Ca2+ fluxes and subsequent protein phosphorylation. Potential molecular strategies are needed to improve plant submergence stress tolerance, including traditional and modern molecular breeding protocols and transgenic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed F, Rafii M et al (2013) Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects. BioMed Res Int. https://doi.org/10.1155/2013/963525

    Article  PubMed  PubMed Central  Google Scholar 

  • Akhtar I, Nazir N (2013) Effect of waterlogging and drought stress in plants. Int J Water Res Environ Eng 2:34–40

    Google Scholar 

  • Anatoly A, Gitelson A et al (2014) Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: implications for remote sensing of primary production. Remote Sens Environ 144:65–72

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signaling transduction. Annu Rev Plant Biol 55:373

    Article  CAS  PubMed  Google Scholar 

  • Armstrong W, Drew MC (2002) Root growth and metabolism under oxygen deficiency. CRC Press, Plant roots, pp 1139–1187

    Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M (2003) Relationships between leaf gas exchange characteristics and growth of differently adapted populations of Blue panicgrass (Panicum antidotale Retz.) under salinity or waterlogging. Plant Sci 165:69–75

    Article  CAS  Google Scholar 

  • Awan SA, Khan I, Rizwan M, Ali Z, Ali S, Khan N, Arumugam N, Almansour AI, Ilyas N (2022) A new technique for reducing accumulation, transport, and toxicity of heavy metals in wheat (Triticum aestivum L) by bio-filtration of river wastewater. Chemosphere 294:133642

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Baloglu MC, Kavas M et al (2012) Antioxidative and physiological responses of two sunflower (Helianthus annuus) cultivars under PEG-mediated drought stress. Turk J Bot 36:707–714

    Google Scholar 

  • Barman TS, Baruah U et al (2011) Selection and evaluation of waterlogging tolerant tea genotypes for plantation in marginal land. Two Bud 58:33–38

    Google Scholar 

  • Baxter-Burrell A, Yang Z et al (2002) ROPGAP4-dependent ROP GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296:2026–2028

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2001) Responses to abiotic stresses. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologist, Rockville, MD, pp 1158–1203

    Google Scholar 

  • Caudle KL, Maricle BR (2012) Effects of flooding on photosynthesis, chlorophyll fluorescence, and oxygen stress in plants of varying flooding tolerance. Trans Kans Acad Sci 115:5–18

    Article  Google Scholar 

  • Chang KY, Lin K et al (2016) Physiology and Proteomics of cabbage under heat and flooding stress. J Bot Sci 5:44–53

    CAS  Google Scholar 

  • Chantarachot T, Bailey-Serres J (2018) Polysomes, stress granules, and processing bodies: a dynamic triumvirate controlling cytoplasmic mRNA fate and function. Plant Physiol 176:254–269. https://doi.org/10.1104/pp.17.01468

    Article  CAS  PubMed  Google Scholar 

  • Chirkova TV, Zhukova TM et al (1992) Redox reactions of plant cells in response to short-term anaerobiosis. Vestnik SPBGU 3:82–86

    Google Scholar 

  • Cho Y-H, Hong J-W et al (2012) Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development. Plant Physio 158:1955–1964

    Article  CAS  Google Scholar 

  • Cho HY, Wen TN et al (2016) Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence. J Exp Bot 67:2745–2760. https://doi.org/10.1093/jxb/erw107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colmer TD, Pedersen O (2008) Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. New Phytol 177:918–926

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD, Voesenek LACJ (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36:665–681

    Article  CAS  PubMed  Google Scholar 

  • Crawford RMM (2003) Seasonal differences in plant responses to flooding and anoxia. Canad J Bot 81:1224–1246

    Article  CAS  Google Scholar 

  • Dat JF, Capelli N et al (2004) Sensing and signaling during plant flooding. Plant Physiol Biochem 42:273–282

    Article  CAS  PubMed  Google Scholar 

  • Dawood MG (2016) Influence of osmoregulators on plant tolerance to water stress. Sci Agric 13(1):42–58

    CAS  Google Scholar 

  • De Castro J, Hill RD et al (2022) Waterlogging stress physiology in barley. Agronomy 12:780

    Article  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8(4):390–396

    Article  CAS  PubMed  Google Scholar 

  • de Moura FB, Vieira MRdS et al (2018) Physiological effect of kinetin on the photosynthetic apparatus and antioxidant enzymes activities during production of anthurium. Horti Plant J 4:182–192

    Article  Google Scholar 

  • Dordas C, Hasinoff BB et al (2003a) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35:763–770

    Article  CAS  PubMed  Google Scholar 

  • Dordas C, Rivoal J et al (2003b) Plant haemoglobins, nitric oxide and hypoxic stress. Ann Bot 91:173–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dröge-Laser W, Snoek BL et al (2018) The Arabidopsis bZIP transcription factor family—an update. Curr Opin Plant Biol 45:36–49. https://doi.org/10.1016/j.pbi.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  • El-Beltagi HS, Mohamed HI (2013) Reactive oxygen species, lipid peroxidation and antioxidative defense mechanism. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41:44–57

    Article  CAS  Google Scholar 

  • Else MA, Coupland D et al (2001) Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to the shoots in xylem sap. Physiol Plant 111:46–54

    Article  CAS  Google Scholar 

  • Emanuelle S, Doblin MS et al (2016) Molecular insights into the enigmatic metabolic regulator, SnRK1. Trends Plant Sci 21:341–353. https://doi.org/10.1016/j.tplants.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  • Ferreira J, Coelho CHM et al (2008) Evaluation of mineral content in maize under flooding. Crop Breed Appl Biot 8:134–140

    Article  CAS  Google Scholar 

  • Fiedler S, Vepraskas MJ et al (2007) Soil redox potential: importance, field measurements, and observations. Adv Agron 94:2–56

    Google Scholar 

  • Folzer H, Dat JF et al (2006) Response of sessile oak seedlings to flooding: an integrated study. Tree Physiol 26:759–766

    Article  CAS  PubMed  Google Scholar 

  • Franke KR, Schmidt SA et al (2018) Analysis of Brachypodium miRNA targets: evidence for diverse control during stress and conservation in bioenergy crops. BMC Genom 19:547. https://doi.org/10.1186/s12864-018-4911-7

    Article  CAS  Google Scholar 

  • Garnczarska M (2005) Response of the ascorbate–glutathione cycle to re-aeration following hypoxia in lupine roots. Plant Physiol Biochem 43:583–590

    Article  CAS  PubMed  Google Scholar 

  • Geigenberger P (2003) Response of plant metabolism too little oxygen. Curr Opin Plant Biol 6:247–256

    Article  CAS  PubMed  Google Scholar 

  • Gerba L, Getachew B et al (2013) Nitrogen fertilization effects on grain quality of durum wheat (Triticum turgidum L. var. durum) varieties in central Ethiopia. Agric Sci 4:123–130

    CAS  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    Article  CAS  PubMed  Google Scholar 

  • Gil PM, Schaffer B et al (2007) Effect of water-logging on plant water status, leaf gas exchange and biomass of avocado (Persea americana Mill.). Proceedings of the VI International Avocado CongressViña del Mar, Chile

  • Grassini P, Indaco GV et al (2007) Responses to short-term waterlogging during grain filling in sunflower. Field Crops Res 101:352–363

    Article  Google Scholar 

  • Grennan AK (2006) Regulation of starch metabolism in Arabidopsis leaves. Plant Physiol 142:1343–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Y, Wang Z et al (2004) ROP/RAC GTPase: an old new master regulator for plant signaling. Curr Opin Plant Biol 7:527–536

    Article  CAS  PubMed  Google Scholar 

  • Hakeem KR, Alharby HF et al (2022) Biochar promotes arsenic (As) immobilization in contaminated soils and alleviates the as-toxicity in soybean (Glycine max (L.) Merr.). Chemosphere 292:133407

    Article  CAS  PubMed  Google Scholar 

  • He Y, Zhang X et al (2021) PREMATURE SENESCENCE LEAF 50 promotes heat stress tolerance in rice (Oryza sativa L.). Rice 14:1–7

    CAS  Google Scholar 

  • Hossain MA, Burritt DJ et al (2016) Cross-stress tolerance in plants: molecular mechanisms and possible involvement of reactive oxygen species and methylglyoxal detoxification systems. Abiotic stress response in plants. 327–380.

  • Insausti P, Grimoldi AA et al (2001) Flooding induces a suite of adaptive plastic responses in the grass Paspalum dilatatum. New Phytol 152:291–299

    Article  Google Scholar 

  • Iqbal M, Ashraf M (2005) Presowing seed treatment with cytokinins and its effect on growth, photosynthetic rate, ionic levels and yield of two wheat cultivars differing in salt tolerance. J Integr Plant Biol 47:1315–1325

    Article  CAS  Google Scholar 

  • Islam MA, Macdonald SE (2004) Ecophysiological adaptations of black spruce (Picea mariana) and tamarack (Larix laricina) seedlings to flooding. Trees 18:35–42

    Article  Google Scholar 

  • Jackson MB (2002) Long–distance signaling from roots to shoots assessed: the flooding story. J Exp Bot 53:175–181

    Article  CAS  PubMed  Google Scholar 

  • Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    Article  CAS  PubMed  Google Scholar 

  • Jin Q, Xu Y et al (2017) Identification of submergence-responsive microRNAs and their targets reveals complex miRNA-mediated regulatory networks in lotus (Nelumbo nucifera Gaertn). Front Plant Sci 8:6. https://doi.org/10.3389/fpls.2017.00006

    Article  PubMed  PubMed Central  Google Scholar 

  • Juan CA, Pérez de la Lastra JM et al (2021) The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci 22:4642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadam S, Abril A et al (2017) Characterization and regulation of aquaporin genes of sorghum [Sorghum bicolor (L.) Moench] in response to waterlogging stress. Front Plant Sci 8:862

    Article  PubMed  PubMed Central  Google Scholar 

  • Kakraliya SK, Jat R et al (2017) Integrated nutrient management for improving, fertilizer use efficiency, soil biodiversity and productivity of wheat in irrigated rice wheat cropping system in Indo-Gangatic plains of India. Int J Curr Microbiol App Sci 6:152–163

    Article  CAS  Google Scholar 

  • Kaur G, Singh G (2020) Impacts and management strategies for crop production in waterlogged/flooded soils: a review. Agron J 112:1475–1501

    Article  Google Scholar 

  • Khakwani AA, Dennett MD et al (2011) Drought tolerance screening of wheat varieties by inducing water stress conditions. Songklanakarin J Sci Techn 33:135–142

    Google Scholar 

  • Khan N, Ali S, Shahid MA, Mustafa A, Sayyed RZ, Curá JA (2021) Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells 10:1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y Shahzad R, and Lee IJ (2020) Regulation of flood stress in plants. In Plant life under changing environment. Academic Press. pp. 157–173

  • Komatsu S, Sugimoto T et al (2010) Identification of flooding stress responsible cascades in root and hypocotyl of soybean using proteome analysis. Amino Acids 38:729–738

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Hiraga S et al (2012) Proteomics techniques for the development of flood tolerant crops. J Proteome Res 11:68–78

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Tougou M et al (2015) Proteomic techniques and management of flooding tolerance in soybean. J Proteome Res 14:3768–3778

    Article  CAS  PubMed  Google Scholar 

  • Kost B (2009) Regulatory and Cellular Functions of Plant RhoGAPs and RhoGDIs. In, Shaul Yalovsky, Fratisek Baluska and Alan Jones, Eds., G Protein Signaling in Plants, In series: Signaling and communication in Plants.71–90.

  • Kushwaha BK, Singh S et al (2019) New adventitious root formation and primary root biomass accumulation are regulated by nitric oxide and reactive oxygen species in rice seedlings under arsenate stress. J Hazard Mater 361:134–140

    Article  CAS  PubMed  Google Scholar 

  • Lan W, Zheng S et al (2022) Establishment of a landscape of UPL5-Ubiquitinated on multiple subcellular components of leaf senescence cell in Arabidopsis. Int J Mol Sci 23:5754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecourieux D, Ranjeva R et al (2006) Calcium in plant defense signaling pathways. New Phytol 171:249–269

    Article  CAS  PubMed  Google Scholar 

  • Lee KW, Chen PW et al (2009) Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci Signal 2:61

    Article  Google Scholar 

  • Lekshmy S, Jha SK, Sairam RK (2015) Physiological and molecular mechanisms of flooding tolerance in plants. Elucidation of abiotic stress signaling in plants. Springer, New York, pp 227–242

    Chapter  Google Scholar 

  • Lenssen JPM, Van De Steeg HM et al (2004) Does disturbance favour weak competitors? Mechanisms of altered plant abundance after flooding. J Veg Sci 15:305–314

    Article  Google Scholar 

  • Li G, Deng Y et al (2017) Differentially expressed microRNAs and target genes associated with plastic internode elongation in Alternanthera philoxeroides in contrasting hydrological habitats. Front Plant Sci 8:78. https://doi.org/10.3389/fpls.2017.02078

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang K, Tang K et al (2020) Waterlogging tolerance in maize: genetic and molecular basis. Mol Breeding 40:111

    Article  Google Scholar 

  • Liao CT, Lin CH (2001) Physiological adaptation of crop plants to flooding stress. Proceeding of the National Science Council, Republic of China 25:148–157

    CAS  Google Scholar 

  • Licausi F, Weits DA et al (2011) Hypoxia responsive gene expression is mediated by various subsets of transcription factors and miRNAs that are determined by the actual oxygen availability. New Phytol 190:442–456

    Article  CAS  PubMed  Google Scholar 

  • Lin K-HR, Weng C-C et al (2004) Study of the root antioxidative system of tomatoes and eggplants under waterlogged conditions. Plant Sci 167:355–365

    Article  CAS  Google Scholar 

  • Liu Z, Kumari S et al (2012) Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays. PLoS ONE 7:e39786. https://doi.org/10.1371/journal.pone.0039786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreti E, Valeri MC et al (2018) Gene regulation and survival under hypoxia requires starch availability and metabolism. Plant Physiol 176:1286–1298. https://doi.org/10.1104/pp.17.01002

    Article  CAS  PubMed  Google Scholar 

  • Luan S, Kudla J et al (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14:389–400

    Article  Google Scholar 

  • Lv Y, Fu S et al (2016) Ethylene response factor BnERF2-like (ERF2. 4) from Brassica napus L. enhances submergence tolerance and alleviates oxidative damage caused by submergence in Arabidopsis thaliana. The Crop Journal 4:199–211

    Article  Google Scholar 

  • Mair A, Pedrotti L et al (2015) SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants. eLife, 4: e05828. https://doi.org/10.7554/eLife05828

  • Malik AI, Colmer TD et al (2001) Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Aust J Plant Physiol 28:1121–1131

    Google Scholar 

  • Malik AI, Colmer TD et al (2002) Short-term waterlogging has long-term effects on the growth and physiology of wheat. New Phytol 153:225–236

    Article  Google Scholar 

  • Manzoor H, Chiltz A et al (2012) Calcium signatures and signaling in cytosol and organelles of tobacco cells induced by plant defense elicitors. Cell Calcium 51:434–444

    Article  CAS  PubMed  Google Scholar 

  • Manzur ME, Grimoldi AA et al (2009) Escape from water or remain quiescent? Lotus tenuis changes its strategy depending on depth of submergence. Ann Bot 104:1163–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mebrahtu TK, Banning A et al (2021) The effect of hydrogeological and hydrochemical dynamics on landslide triggering in the central highlands of Ethiopia. Hydrogeol J 29(3):1239–1260

    Article  CAS  Google Scholar 

  • Mielke MS, De Ameida AAF et al (2003) Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. Environ Exp Bot 50:221–231

    Article  CAS  Google Scholar 

  • Miro B, Ismail AM (2013) Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). Front Plant Sci 4:1–18

    Article  Google Scholar 

  • Moldovan D, Spriggs A et al (2010) Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot 61:165–177. https://doi.org/10.1093/jxb/erp296

    Article  PubMed  Google Scholar 

  • Mollard FPO, Striker GG et al (2008) Flooding tolerance of Paspalum dilatatum (Poaceae: Paniceae) from upland and lowland positions in a natural grassland. Flora 203:548–556

    Article  Google Scholar 

  • Mollard FPO, Striker GG et al (2010) Subtle topographical differences along a floodplain promote different plant strategies among Paspalum dilatatum subspecies and populations. Austral Eco 35:189–196

    Article  Google Scholar 

  • Mommer L, Pedersen O et al (2004) Acclimation of a terrestrial plant to submergence facilitates gas exchange under water. Plant Cell Environ 27:1281–1287

    Article  Google Scholar 

  • Muliadi A, Nur A et al (2021) Changes in agronomic tolerance of several genotypes of maize to waterlogging. IOP Conference Series: earth and environmental science, IOP Publishing.

  • Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:86–92

    Article  CAS  PubMed  Google Scholar 

  • Naeem M, Waseem M et al (2020) Downregulation of SlGRAS15 manipulates plant architecture in tomato (Solanum lycopersicum). Dev Genes Evol 230:1–12

    Article  PubMed  Google Scholar 

  • Nanjo Y, Jang HY et al (2014) Analyses of flooding tolerance of soybean varieties at emergence and varietal differences in their proteomes. Phytochemistry 106:25–36

    Article  CAS  PubMed  Google Scholar 

  • Narayanan S, Ruma D et al (2005) Antioxidant activities of Seabuckthorn (Hippophae rhamnoides) during hypoxia induced oxidative stress in glial cells. Mol Cell Biochem 278:9–14

    Article  CAS  PubMed  Google Scholar 

  • Nawaz H, Hussain N, Shahid MA, Khan N, Yasmeen A, Ahmad HW, Fahad S, Rafay M, Nasim W (2022) Water management in Era of climate change. Building climate resilience in agriculture. Springer, Cham, pp 167–178

    Chapter  Google Scholar 

  • Nayak S, Habib MA et al (2022) Adoption trend of climate-resilient rice varieties in Bangladesh. Sustainability 14:5156

    Article  Google Scholar 

  • Neill SJ, Desikan R et al (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Nibau C, Wu HM et al (2006) RAC/ROP GTPases: ‘Hubs’ for signal integration and diversification in plants. Trends Plant Sci 11:309–315

    Article  CAS  PubMed  Google Scholar 

  • Nicolas E, Torrecillas A et al (2005) The effect of short term flooding on the sap flow, leaf gas exchange, and tree hydraulic conductivity of young apricot trees. Trees - Struct Funct 19:51–57

    Article  Google Scholar 

  • Oosterhuis DM, Scott HD et al (1990a) Physiological responses of two soybeans [Glycine max (L.) Merr] cultivars to short-term flooding. Environ Experimental Botany. 30:85–92

    Article  Google Scholar 

  • Parent C, Berger A et al (2008) A novel non-symbiotic hemoglobin from oak: cellular and tissue specificity of gene expression. New Phytol 177:142–154

    Article  CAS  PubMed  Google Scholar 

  • Park S-U, Lee C-J et al (2020) Selection of flooding stress tolerant sweetpotato cultivars based on biochemical and phenotypic characterization. Plant Physiol Biochem 155:243–251

    Article  CAS  PubMed  Google Scholar 

  • Pauly N, Pucciariello C et al (2006) Reactive oxygen and nitrogen species and glutathione: key players in the Legume-Rhizobium symbiosis. J Exp Bot 57:1769–1776

    Article  CAS  PubMed  Google Scholar 

  • Pedrotti L, Weiste C et al (2018) Snf1-RELATED KINASE1-controlled C/S1-bZIP signaling activates alternative mitochondrial metabolic pathways to ensure plant survival in extended darkness. Plant Cell 30:495–509. https://doi.org/10.1105/tpc.17.00414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei ZM, Murata Y et al (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Peltonen-Sainio P, Sorvali J et al (2021) Finnish farmers’ views towards fluctuating and changing precipitation patterns pave the way for the future. Agric Water Manag 255:107011

    Article  Google Scholar 

  • Perazzolli M, Dominici P et al (2004) Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 16:2785–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide—a central hub for information flow in plant cells. AoB Plants. https://doi.org/10.1093/aobpla/pls014

    Article  PubMed  PubMed Central  Google Scholar 

  • Pezeshki SR (2001) Wetland plant responses to soil flooding. Environ Exp Bot 46:299–312

    Article  Google Scholar 

  • Phukan UJ, Sonal Mishra S et al (2015) Waterlogging and submergence stress: affects and acclimation. Crit Rev Biotechnol. https://doi.org/10.3109/07388551.2015.1064856

    Article  PubMed  Google Scholar 

  • Ploschuk RA, Miralles DJ et al (2018) Waterlogging of winter crops at early and late stages: impacts on leaf physiology, growth and yield. Front Plant Sci 9:1863

    Article  PubMed  PubMed Central  Google Scholar 

  • Pociecha E, Koscielniak J et al (2008) Effects of root flooding and stage of development on the growth and photosynthesis of field bean (Vicia faba L. minor). Acta Physiol Plant 30:529–535

    Article  CAS  Google Scholar 

  • Ponnamperuma FN (1984) Effects of flooding on soils. In: Kozlowski TT (ed) flooding and plant growth. Academic Press, Orlando, pp 9–45

    Chapter  Google Scholar 

  • Posso DA, Borella J et al (2018) Root flooding-induced changes in the dynamic dissipation of the photosynthetic energy of common bean plants. Acta Physiol Plant 40:1–14

    Article  CAS  Google Scholar 

  • Purnobasuki H, Nurhidayati T et al (2018) Data of root anatomical responses to periodic waterlogging stress of tobacco (Nicotiana tabacum) varieties. Data Brief 20:2012–2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Qureshi RH, Barrett-Lennard EG (1998) Saline agriculture for irrigated land in Pakistan: a handbook. Australian Centre for International Agricultural Research, Canberra, Australia. 142 pp.

  • Raghavendra AS, Gonugunta VK et al (2010) ABA perception and signaling. Trends Plant Sci 15:395–401

    Article  CAS  PubMed  Google Scholar 

  • Rai GK, Bhat BA et al (2021) Insights into decontamination of soils by phytoremediation: adetailed account on heavy metal toxicity and mitigation strategies. Physiol Plant 173:287–304

    CAS  PubMed  Google Scholar 

  • Ram PC, Singh BB et al (2002) Submergence tolerance in rainfed lowland rice: physiological basis and prospects for cultivar improvement through marker-aided breeding. Field Crops Res 76:131–152

    Article  Google Scholar 

  • Redfern K, Azzu N et al (2012) Rice in Southeast Asia: facing risks and vulnerabilities to respond to climate change. Proceedings of a joint FAO/OECD workshop, Rome, Italy

  • Ren B, Zhang J et al (2014) Effects of waterlogging on the yield and growth of summer maize under field conditions. Can J Plant Sci 94:23–31

    Article  Google Scholar 

  • Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399. https://doi.org/10.1105/tpc.113.113159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romina P, Abeledo LG et al (2014) Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant Soil 378:265–277

    Article  Google Scholar 

  • Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental Sorenson R, Bailey-Serres J (2014) Selective mRNA sequestration by OLIGOURIDYLATEBINDING PROTEIN 1 contributes to translational control during hypoxia in Arabidopsis. Proc Natl Acad Sci USA 111:2373–2378. https://doi.org/10.1073/pnas.1314851111

    Article  CAS  Google Scholar 

  • Sachs M, Vartapetian B (2007) Plant anaerobic stress I. Metabolic adaptation to oxygen deficiency. Plant Stress 1:123–135

    Google Scholar 

  • Saeidnejad AH, Kafi M et al (2013) Effects of drought stress on qualitative yield and antioxidative activity of Bunium persicum. Turk J Bot 37:930–939

    Article  CAS  Google Scholar 

  • Sairam RK, Kumutha D et al (2008) Physiology and biochemistry of waterlogging tolerance in plants. Biol Plant 52:401–412

    Article  CAS  Google Scholar 

  • Samad A, Meisner CA et al (2001) Waterlogging tolerance in application of physiology in wheat breeding. Eds. MP Reynolds, JI Ortiz-Monasterio and A. McNab. pp 136–144. CIMMYT, Mexico

  • Sartori M, Philippidis G et al (2019) A linkage between the biophysical and the economic: assessing the global market impacts of soil erosion. Land Use Policy 86:299–312

    Article  Google Scholar 

  • Schlüter U, Crawford RMM (2001) Long-term anoxia tolerance in leaves of Acorus calamus L. and Iris pseudacorus L. J Exp Bot 52:2213–2225

    Article  PubMed  Google Scholar 

  • Scott HD, DeAngulo J et al (1990b) Influence of temporary flooding at three growth stages on soybeans grown on a clayey soil. J Plant Nutr 13:1045–1071

    Article  Google Scholar 

  • Setter TL, Waters I (2003) Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 253:1–34

    Article  CAS  Google Scholar 

  • Shabala S (2011) Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol 190:289–298

    Article  CAS  PubMed  Google Scholar 

  • Shaw RE, Meyer WS et al (2013) Waterlogging in Australian agricultural landscapes: a review of plant responses and crop models. Crop Pasture Sci 64:549–562

    Article  Google Scholar 

  • Shi F, Yamamoto R et al (2008) Cytosolic ascorbate peroxidase 2 (cAPX 2) is involved in the soybean response to flooding. Phytochemistry 69:1295–1303

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Williard K et al (2016) Spatial relation of apparent soil electrical conductivity with crop yields and soil properties at different topographic positions in a small agricultural watershed. Agronomy 6:57–79

    Article  Google Scholar 

  • Singh A, Septiningsih EM et al (2017) Genetics, physiological mechanisms and breeding of flood-tolerant rice (Oryza sativa L.). Plant Cell Physiol 58:185–197

    CAS  PubMed  Google Scholar 

  • Sofo A, Scopa A et al (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16:13561–13578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevenson SE, Woods CA, Hong B, Kong X, Thelen JJ, Ladics GS (2012) Environmental effects on allergen levels in commercially grown non-genetically modified soybeans: assessing variation across North America. Front Plant Sci 3:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Striker GG (2012) Flooding stress on plants: anatomical, morphological and physiological responses. Botany 1:3–28

    Google Scholar 

  • Striker GG, Insausti P et al (2005) Physiological and anatomical basis of differential tolerance to soil flooding of Lotus corniculatus L. and Lotus glaber Mill. Plant Soil 276:301–311

    Article  CAS  Google Scholar 

  • Striker GG, Insausti P et al (2007) Effects of flooding at early summer on plant water relations of Lotus tenuis. Lotus Newsletter 37:1–7

    Google Scholar 

  • Striker GG, Insausti P et al (2008) Flooding effects on plant recovery from defoliation in the grass Paspalum dilatatum and the legume Lotus tenuis. Ann Bot 102:247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Striker GG, Manzur ME et al (2011) Increasing defoliation frequency constrains re-growth of Lotus tenuis under flooding the role of crown reserves. Plant Soil 343:261–272

    Article  CAS  Google Scholar 

  • Subbaiah CC, Sachs MM (2003) Molecular and cellular adaptations of maize to flooding stress. Ann Bot 91(2):119–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Guo W et al (2022) Sulfur limitation boosts more starch accumulation than nitrogen or phosphorus limitation in duckweed (Spirodela polyrhiza). Ind Crops Prod 185:115098

    Article  CAS  Google Scholar 

  • Takeda S, Gapper C et al (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    Article  CAS  PubMed  Google Scholar 

  • Tamang BG, Magliozzi JO et al (2014) Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings. Plant Cell Environ 37(10):2350–2365

    CAS  PubMed  Google Scholar 

  • Tan S, Zhu M et al (2010) Physiological responses of bermudagrass (Cynodon dactylon) to submergence. Acta Physiol Plant 32:133–140

    Article  Google Scholar 

  • Tewari S, Mishra A (2018). Flooding stress in plants and approaches to overcome. In Plant metabolites and regulation under environmental stress (pp:355–366). Academic Press

  • Titarenko TY (2000) Test parameters of revealing the degree of fruit plants tolerance to the root hypoxia caused flooding of soil. Plant Physiol Biochem 38:115

    Google Scholar 

  • Toojinda T, Siangliw M et al (2003) Molecular genetics of submergence tolerance in rice: QTL analysis of key traits. Ann Bot 91:243–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres MA, Dangl JL et al (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99:517–522

    Article  CAS  PubMed  Google Scholar 

  • Tournaire-Roux C, Sutka M et al (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393–397

    Article  CAS  PubMed  Google Scholar 

  • Urban DW, Roberts MJ et al (2015) The effects of extremely wet planting conditions on maize and soybean yields. Clim Change 130:247–260

    Article  CAS  Google Scholar 

  • Uzair M, Ali M, Fiaz S, Attia K, Khan N, Al-Doss AA, Khan MR, Ali Z (2022) The characterization of wheat genotypes for salinity tolerance using morpho-physiological indices under hydroponic conditions. Saudi J Biolog Sci 29:103299

    Article  CAS  Google Scholar 

  • Vashisht D, Hesselink A et al (2011) Natural variation of submergence tolerance among Arabidopsis thaliana accessions. New Phytol 190:299–310

    Article  CAS  PubMed  Google Scholar 

  • Venus Y, Oelmüller R (2012) Arabidopsis ROP1 and ROP6 influence germination time, root morphology, the formation of F-actin bundles, and symbiotic fungal interactions. Mol Plant. https://doi.org/10.1093/mp/sss101

    Article  PubMed  Google Scholar 

  • Verdoucq L, Grondin A et al (2008) Structure–function analyses of plant aquaporin AtPIP2;1 gating by divalent cations and protons. Biochem J 415:409–416

    Article  CAS  PubMed  Google Scholar 

  • Verma KK, Singh M et al (2014) Photosynthetic gas exchange, chlorophyll fluorescence, antioxidant enzymes, and growth responses of Jatropha curcas during soil flooding. Turk J Bot 38:130–140

    Article  CAS  Google Scholar 

  • Villar-Salvador P, Uscola M et al (2015) The role of stored carbohydrates and nitrogen in the growth and stress tolerance of planted forest trees. New for 46:813–839

    Article  Google Scholar 

  • Vincent E, Robert DLP et al (2010) Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Braz J Plant Physiol 22:131–142

    Google Scholar 

  • Vincent E, Cyrille AV, Robert dIP et al (2012) Gene expression and phenotypic characterization of flooding tolerance in tomato. J Evolutionary Biol Res. 4: 59-65

  • Voesenek LACJ, Rijnders J et al (2004) Plant hormones regulate fast shoot elongation under water from genes to communities. Ecology 85:16–27

    Article  Google Scholar 

  • Wang P, Yin L et al (2012) Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate–glutathione cycle. J Pineal Res 53:11–20

    Article  PubMed  Google Scholar 

  • Wang F, Chen Z-H et al (2016) Tissue-specific root ion profiling reveals essential roles of the CAX and ACA calcium transport systems in response to hypoxia in Arabidopsis. J Exp Bot 67:3747–3762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Deng Z et al (2017) Effect of waterlogging duration at different growth stages on the growth, yield and quality of cotton. PLoS ONE. https://doi.org/10.1371/journal.pone.0169029

    Article  PubMed  PubMed Central  Google Scholar 

  • Warren JM, Norby RJ et al (2011) Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol 31:117–130

    Article  PubMed  Google Scholar 

  • Wegner LH (2010) Oxygen transport in waterlogged plants. In: Mancuso S, Shabala S (eds) Waterlogging Signalling and Tolerance in Plants. Springer, Berlin, pp 3–22

    Chapter  Google Scholar 

  • West H, Quinn N et al (2018) Assessing vegetation response to soil moisture fluctuation under extreme drought using Sentinel-2. Water 10:838

    Article  Google Scholar 

  • Winkel A, Herzog M et al (2017) Flood tolerance of wheat–the importance of leaf gas films during complete submergence. Funct Plant Biol 44:888–898

    Article  PubMed  Google Scholar 

  • Wurzinger B, Mair A et al (2017) Redox state-dependent modulation of plant SnRK1 kinase activity differs from AMPK regulation in animals. FEBS Lett 591:3625–3636. https://doi.org/10.1002/1873-3468.12852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia J, Zhang Y et al (2017) Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci China Earth Sci 60:652–658

    Article  Google Scholar 

  • Yamauchi T, Colmer TD, Pedersen O, Nakazono M (2018) Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiol 176(2):1118–1130

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Dai QJ et al (1996) Flooding induced membrane damage lipid oxidation and active oxygen generation in corn leaves. Plant Soil 179:261–268

    Article  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proceeding National Academy of Sciences of the United State America 99:4097–4102

    Article  CAS  Google Scholar 

  • Yordanova RY, Popova LP (2001) Photosynthetic response of barley plants to soil flooding. Photosynthetica 39:515–520

    Article  Google Scholar 

  • Yordanova R, Christov K et al (2004) Antioxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot 51:93–101

    Article  CAS  Google Scholar 

  • Zhai L, Liu Z et al (2013) Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings. Physiol Plant 147:181–193. https://doi.org/10.1111/j.1399-3054,2012.01653.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wei L et al (2008) Submergence-responsive microRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Ann Bot 102:509–519. https://doi.org/10.1093/aob/mcn129

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xu S et al (2015) Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma 252:911–924

    Article  CAS  PubMed  Google Scholar 

  • Zhou MZ (2010) Improvement of plant waterlogging tolerance. In: Mancuso S, Shabala S (Eds) Waterlogging signalling and tolerance in plants. Springer-Verlag, Heidelberg, Germany, pp 267–285

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N and NK conceived the idea and wrote the initial draft. SA and NK drew the diagrams; MN, MU, LS and HY reviewed and edited the paper.

Corresponding authors

Correspondence to Nasrullah or Naeem Khan.

Ethics declarations

Conflict of interest

The authors declare no conflict interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrullah, Ali, S., Umar, M. et al. Flooding tolerance in plants: from physiological and molecular perspectives. Braz. J. Bot 45, 1161–1176 (2022). https://doi.org/10.1007/s40415-022-00841-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-022-00841-0

Keywords

Navigation