Skip to main content
Log in

Transposition of the maize transposable element dSpm in transgenic sugar beets

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Transgenic plants and cell lines of sugar beet carrying Spm/dSpm system of maize transposable elements have been obtained by Agrobacterium-mediated transformation. A heterologous system of mobile elements Spm/dSpm remains active in the genome of sugar beet that permit of transposon-based gene tagging and obtaining of marker-free transgenic sugar beet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khesin, R.B., Nepostoyanstvo Genoma (Genome Instability), Moscow: Nauka, 1984.

    Google Scholar 

  2. Chernysheov, A.I., Molecular Organization of Plant Genome, in Stabil’nost’ i izmenchivost’ genoma (Genome Stability and Variation), Boganov, Yu.F., Ed., Moscow: Nauka, 1985, pp. 5–15.

    Google Scholar 

  3. Gorbunova, V. and Levy, A., An Analysis of Extrachromosomal Ac/Ds Transposable Elements, Genetics, 2000, vol. 155, pp. 349–359.

    PubMed  CAS  Google Scholar 

  4. Kitamura, K., Hashida, Sh., Mikami, T., and Kishima, Y., Position Effect of the Excision Frequency of the Antirrhinum Transposon Tam3: Implications for the Degree of Position-Dependent Methylation in the Ends of the Element, Plant Mol. Biol., 2001, vol. 47, pp. 475–490.

    Article  PubMed  CAS  Google Scholar 

  5. Bennetaen, J.L., Transposable Element Contributions to Plant Gene and Genome Evolution, Plant, 2000, vol. 42, pp. 251–269.

    Google Scholar 

  6. Weil, C. and Martienssen, R., Epigenetic Interactions between Transposons and Genes: Lessons from Plants, Curr. Opin. Genet. Devel., 2008, vol. 18, pp. 188–192.

    Article  CAS  Google Scholar 

  7. Ramachandran, S. and Sundaresan, V., Transposons as Tools for Functional Genomics, Plant Physiol. Biochem., 2001, vol. 39, pp. 243–252.

    Article  CAS  Google Scholar 

  8. Fedoroff, N.V., Furtek, D., and Nelson, O.E., Cloning of the Bronze Locus in Maize by a Simple and Generalized Procedure using the Transposable Controlling Element, Proc. Nat. Acad. Sci. USA, 1984, vol. 81, pp. 3825–3829.

    Article  PubMed  CAS  Google Scholar 

  9. Aarts, M.G.M., Dirkse, W.G., Stiekema, W.J., and Pereira, A., Transposon Tagging of a Male Sterility Gene in Arabidopsis thaliana, Nature, 1993, vol. 363, no. 6431, pp. 715–718.

    Article  PubMed  CAS  Google Scholar 

  10. Qu, S., Desai, A., Wing, R., and Sundaresan, V.A., Versatile Transposon-Based Activation Tag Vector System for Functional Genomics in Cereals and Other Monocot Plants, Plant Physiol., 2008, vol. 146, pp. 189–199.

    Article  PubMed  CAS  Google Scholar 

  11. Goldsborough, A.P., Lastrella, C.N., and Yoder, J.I., Transposition of Marker Genes from Transgenic Tomato, BioTech, 1993, vol. 11, pp. 1286–1292.

    Google Scholar 

  12. Yoder, J.I., Palys, J., Alpert, K., and Lassner, M., Ac Transposition in Transgenic Tomato Plants, Mol. Gen. Genet., 1988, vol. 213, pp. 291–296.

    Article  CAS  Google Scholar 

  13. Ebinuma, H., Sugita, K., Matsunaga, E., and Yamacado, M., Selection of Marker-Free Transgenic Plants using the Isopentynyl Transferase Gene, Proc. Nat. Acad. Sci. USA, 1997, vol. 94, pp. 2117–2121.

    Article  PubMed  CAS  Google Scholar 

  14. Baker, B., Schell, J., Lorz, H., and Fedoroff, N., Transposition of the Maize Controlling Element “Activator” in Tobacco, Proc. Nat. Acad. Sci. USA, 1986, vol. 83, no. 13, pp. 4844–4848.

    Article  PubMed  CAS  Google Scholar 

  15. Knapp, S., Coupland, G., Uhrig, H., et al., Transposition of the Maize Transposable Element Ac in Solanum tuberosum, Mol. Gen. Genet., 1988, vol. 213, pp. 285–290.

    Article  CAS  Google Scholar 

  16. Haring, M.A., Gao, J., Volbeda, T., Rommens, C.M.T., et al., A Comparative Study of Tan3 and Ac Transposition in Transgenic Tobacco and Petunia Plants, Plant. Mol. Biol., 1989, vol. 13, pp. 189–201.

    Article  PubMed  CAS  Google Scholar 

  17. Murai, N., Li, Z., Kawagoe, Y., and Hayashimoto, A., Transposition of the Maize Activator Element in Transgenic Rice Plants, Nucleic Acids Res., 1991, vol. 19, no. 3, pp. 617–622.

    Article  PubMed  CAS  Google Scholar 

  18. Takumi, S., Murai, K., Mori, N., and Nakamura, C., Transactivation of Maize Transposable Element in Transgenic Wheat Plants Expressing the Ac Transposase Gene, Theor. Appl. Genet., 1999, vol. 98, pp. 947–953.

    Article  CAS  Google Scholar 

  19. Babwah, A.V. and Waddell, C.S., Trans-Activation of the Maize Transposable Element, Ds, in Brassica napus, Theor. Appl. Genet., 2002, vol. 104, pp. 1141–1149.

    Article  PubMed  CAS  Google Scholar 

  20. Dean, C., Sjodin, K., Page, T., Jones, J., and Lister, C., Behaviour of the Maize Transposable Element Ac in Arabidopsis thaliana, Plant J., 1992, vol. 2, no. 1, pp. 69–81.

    Article  CAS  Google Scholar 

  21. Van Slyus, M.A., Tempe, J., and Fedoroff, N., Studies on the Introduction and Mobility of the Maize Activator Element in Arabidopsis thaliana and Dauces carota, EMBO J., 1987, vol. 6, pp. 3881–3889.

    Google Scholar 

  22. Kumar, S. and Fladung, M., Somatic Mobility of the Maize Element Ac and Its Utility for Gene Tagging in Aspen, Plant. Mol. Biol., 2003, vol. 51, pp. 643–650.

    Article  PubMed  CAS  Google Scholar 

  23. Emelyanov, A., Gao, Y., Naqvi, N.I., and Parinov, S., Transkingdom Transposition of the Maize Dissociation Element, Genetics, 2006, vol. 174, pp. 1095–1104.

    Article  PubMed  CAS  Google Scholar 

  24. Cardon, G.H., Frey, M., Saedler, H., and Gierl, A., Definition and Characterization of an Artificial En/Spm-Based Transposon Tagging System in Transgenic // Tobacco, Plant. Mol. Biol., 1993, vol. 23, no. 1, pp. 157–178.

    Article  Google Scholar 

  25. Frey, M., Tavantsiz, S.M., and Saedler, H., The Maize EnI/Spm Element Transposes in Potato, Mol. Gen. Genet., 1989, vol. 217, pp. 172–177.

    Article  PubMed  CAS  Google Scholar 

  26. Sakhno, L.A., Sytnik, E.S., Cherep, N.N., et al., Activity of the Corn Spm Transposon System in Transgenic Plants Orychophragmus violaceus (L.) O.E. Schulz Obtained by Both Direct Transfer of DNA to Protoplasts and Agrobacterial Transformation of Root Explants, Tsitol. Genet., 2002, vol. 36, no. 5, pp. 3–8.

    PubMed  CAS  Google Scholar 

  27. D’Erfurth, I., Cosson, V., Eschstruth, A., et al., Rapid Inactivation of the Maize Transposable Element En/Spm in Medicago truncatula, Mol. Genet. Genom., 2003, vol. 269, pp. 732–745.

    Article  CAS  Google Scholar 

  28. Greco, R., Ouwerkerk, P.B.F., Taal, A.J.C., et al., Transcription and Somatic Transposition of the Maize En/Spm Transposon System in Rice, Mol. Genet. Genom., 2004, vol. 270, pp. 514–523.

    Article  CAS  Google Scholar 

  29. Ovcharenko, O.O., Komarnits’kii, I.K., Cherep, M.N., et al., Obtaining of Intertribal Brassica juncea + Arabidopsis thaliana Somatic Hybrids and Study of Transgenic Trait Behavior, Tsitol. Genet., 2004, vol. 38, no. 3, pp. 3–8.

    PubMed  CAS  Google Scholar 

  30. Ovcharenko, O.O., Komarnits’kii, I.K., Cherep, M.N., et al., Obtaining of Intertribal Somatic Hybrids of Digenomic (Orychophragmus violaceus + Arabidopsis thaliana) and Tetragenomic (Orychophragmus violaceus + Brassica juncea + Arabidopsis thaliana) Origin and Their Use in Studies of Behavior of the Spm/dSpm Heterologous Transposon System, Biopolym. Cell, 2005, no. 1, pp. 35–41.

  31. Ovcharenko, O.O., Komarnits’kii, I.K., Cherep, M.N., et al., Creation and Analysis of Brassica napus + Arabidopsis thaliana Somatic Hybrids Possessing Maize Spm/Dspm Heterologous Transposable System, Tsitol. Genet., 2005, vol. 39, no. 3, pp. 50–56.

    PubMed  CAS  Google Scholar 

  32. Masson, P. and Fedoroff, N.V., Mobility of Maize Suppressor-Mutator Element in Transgenic Tobacco Cells, Proc. Nat. Acad. Sci. USA, 1989, vol. 86, pp. 2219–2223.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, H. and Somerville, C.R., Transfer of the Maize Transposable Element Mu1 Into Arabidopsis thaliana, Plant Sci., 1987, vol. 48, pp. 165–173.

    Article  CAS  Google Scholar 

  34. Strommer, J.A. and Ortiz, D., Mu-1-Induced Mutant Alleles of Maize Exhibit Background-Dependent Changes in Expression and RNA Processing, Devel. Genet., 1989, vol. 10, pp. 452–459.

    Article  CAS  Google Scholar 

  35. Frank, M.J., Liu, D., Tsay, Y.F., et al., Rag1 Is An Autonomous Transposable Element That Shows Somatic Excision in Both Arabidopsis and Tobacco, Plant Cell, 1997, vol. 9, pp. 1745–1756.

    Article  PubMed  CAS  Google Scholar 

  36. Liu, D., Zhang, S., Fauquet, C., and Crawford, N.M., The Arabidopsis Transposon Tag1 Is Active in Rice, Undergoing Germinal Transposition and Restricted, Late Somatic Excision, Mol. Gen. Genet., 1999, vol. 262, pp. 413–420.

    Article  PubMed  CAS  Google Scholar 

  37. Ishikava, N., Jozuka-Hisamoti, Y., Sugita, K., et al., The Transposon Tip100 from the Common Morning Glory Is an Element That Can Transpose in Tobacco Plant, Mol. Genet. Genom., 2002, vol. 266, pp. 732–739.

    Article  CAS  Google Scholar 

  38. Mazier, M., Botton, E., Flamain, F., et al., Successful Gene Tagging in Lettuce using the Tnt1 Retrotransposon from Tobacco, Plant Physiol., 2007, vol. 144, pp. 18–31.

    Article  PubMed  CAS  Google Scholar 

  39. Wisman, E., Hartmann, U., Sagasser, M., et al., Knock-Out Mutants from An En-1 Mutagenized Arabidopsis thaliana Population Generate Phenylpropanoid Biosynthesis Phenotypes, Proc. Nat. Acad. Sci. USA, 1998, vol. 95, pp. 12432–12437.

    Article  PubMed  CAS  Google Scholar 

  40. Bancroft, I., Jones, J., and Dean, C., Heterologous Transposon Tagging of the DRL1 Locus in Arabidopsis, Plant Cell, 1993, vol. 5, pp. 631–638.

    Article  PubMed  CAS  Google Scholar 

  41. Chuck, G., Robbins, T., Nijjar, C., et al., Tagging and Cloning of a Petunia Flower Colour Gene with the Maize Transposable Element Activator, Plant Cell, 1993, vol. 5, pp. 371–378.

    Article  PubMed  CAS  Google Scholar 

  42. Jones, D.A., Thomas, C.M., Hammond-Kosack, K.E., et al., Isolation of the Tomato Cf-9 Gene for Resistance to Cladosporium fulvum by Transposon Tagging, Science, 1994, vol. 266, pp. 789–793.

    Article  PubMed  CAS  Google Scholar 

  43. Majira, A., Domin, M., Grandjean, O., et al., Seedling Lethality in Nicotiana plumbaginifolia Conferred by Ds Transposable Element Insertion Into a Plant-Specific Gene, Plant. Mol. Biol., 2002, vol. 50, pp. 551–562.

    Article  PubMed  CAS  Google Scholar 

  44. Zhu, Q.-H., Ramm, K., Shivakkumar, R., et al., The ANTHER INDEHISCENCE1 Gene Encoding a Single MYB Domain Protein Is Involved in Anther Development in Rice, Plant Physiol., 2004, vol. 135, pp. 1514–1525.

    Article  PubMed  CAS  Google Scholar 

  45. Gidoni, D., Fuss, E., Burbidge, A., et al., Multi-Functional T-DNA/Ds Tomato Lines Designed for Gene Cloning and Molecular and Physical Dissection of the Tomato Genome, Plant. Mol. Biol., 2003, vol. 51, pp. 83–98.

    Article  PubMed  CAS  Google Scholar 

  46. Schneider, A., Kirch, T., Gigolashvili, T., et al., A Transposon-Based Activation-Tagging Population in the Identification of Dominant Developmental and Metabolic Mutations, FEBS Lett., 2005, vol. 579, pp. 4622–4628.

    Article  PubMed  CAS  Google Scholar 

  47. Kumar, C.S., Wing, R.A., and Sundaresan, V., Efficient Insertional Mutagenesis in Rice using the Maize En/Spm Elements, Plant J., 2005, vol. 44, pp. 879–892.

    Article  PubMed  CAS  Google Scholar 

  48. Panjabi, P., Burma, P.K., and Pental, D., Use of the Transposable Element Ac/Ds in Conjunction with Spm/dSpm for Gene Tagging Allows Extensive Genome Coverage with a Limited Number of Starter Lines: Functional Analysis of a Four-Element System in Arabidopsis thaliana, Mol. Genet. Genom., 2006, vol. 276, pp. 533–543.

    Article  CAS  Google Scholar 

  49. Mathieu, M., Winters, E.K., Kong, F., et al., Establishment of a Soybean (Glycine max Merr, L.) Transposon-Based Mutagenesis Repository, Planta, 2009, vol. 229, pp. 279–289.

    Article  PubMed  CAS  Google Scholar 

  50. Schmidt, T., Kubis, S., and Heslop-Harrison, J.S., Analysis and Chromosomal Localization of Retrotransposons in Sugar Beet (Beta vulgaris, L.): LINEs and Ty1-Copia-Like Elements as Major Components of the Genome, Chromosome Res., 1995, vol. 3, pp. 335–345.

    Article  PubMed  CAS  Google Scholar 

  51. Jacobs, G., Dechyeva, D., Menzel, G., et al., Molecular Characterization of Vilmar1, a Complete Mainier Transposon of Sugar Beet and Diversity of Mariner- and En/Spm-Like Sequences in the Genus Beta, Genome, 2004, vol. 47, pp. 1192–1201.

    Article  PubMed  CAS  Google Scholar 

  52. Kuykendall, D., Shao, J., and Trimmer, K., Coe1 in Beta vulgaris L. Has a Tnp2-Domain DNA Transposase Gene within Putative Ltrs and Other Retroelement-Like Features, Int. J. Plant. Genom., 2008, ID 360874 (doi: 10.1155/2008/360874).

  53. Kishchenko, E.M. and Kuchuk, N.V., Effect of Exogenic Carbohydrates on the Efficiency of Genetic Transformation of Tobacco and Sugar Beet with Agrobacterium tumefaciens, Fiziol. Biokhim. Kul’t. Rast., 2005, vol. 37,no. 2, pp. 160–166.

    Google Scholar 

  54. Kishchenko, O.M., Komarnits’kii, I.K., Gleba, Yu.Yu., and Kuchuk, M.V., Production of Transgenic Sugarbeet (Beta vulgaris L.) Plants of O-Type using Agrobacterium tumefaciens, Tsitol. Genet., 2004, vol. 38, no. 5, pp. 3–8.

    PubMed  CAS  Google Scholar 

  55. Plant Genetic Transformation and Gene Expression: ALaboratory Manual, Draper, J., Scott, R., Armitage, P., and Walden, R., Eds., Oxford: Blackwell Sci., 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Kishchenko.

Additional information

Original Russian Text © E.M. Kishchenko, I.K. Komarnitskii, N.V. Kuchuk, 2010, published in Tsitologiya i Genetika, 2010, Vol. 44, No. 4, pp. 9–15.

About this article

Cite this article

Kishchenko, E.M., Komarnitskii, I.K. & Kuchuk, N.V. Transposition of the maize transposable element dSpm in transgenic sugar beets. Cytol. Genet. 44, 200–205 (2010). https://doi.org/10.3103/S009545271004002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545271004002X

Keywords

Navigation