Skip to main content
Log in

Quaternion and Biquaternion Methods and Regular Models of Analytical Mechanics (Review)

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

This paper is an analytical review in which we present quaternion and biquaternion methods for describing motion, models of the theory of finite displacements and regular kinematics of a rigid body based on the use of four-dimensional real and dual Euler (Rodrigues–Hamilton) parameters. These models, in contrast to the classical models of kinematics in Euler–Krylov angles and their dual counterparts, do not have division-by-zero features and do not contain trigonometric functions, which increases the efficiency of analytical research and numerical solution of problems in mechanics, inertial navigation, and motion control.

The problem of regularization of differential equations of the perturbed spatial two-body problem, which underlies celestial mechanics and space-flight mechanics (astrodynamics), is discussed using the Euler parameters, four-dimensional Kustaanheimo–Stiefel variables, and Hamilton quaternions; this problem consists in eliminating the singularities (division by zero) which are generated by the Newtonian gravitational forces acting on a celestial or cosmic body and which complicate the analytical and numerical study of the motion of a body near gravitating bodies or its motion along highly elongated orbits. The history of the regularization problem and the regular Kustaanheimo–Stiefel equations, which have found wide application in celestial mechanics and astrodynamics, are presented. We present the quaternion methods of regularization, which have a number of advantages over Kustaanheimo–Stiefel matrix regularization, and various regular quaternion equations of the perturbed spatial two-body problem (for both absolute and relative motion), which are useful for predicting and correcting the orbital motion of celestial and cosmic bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. Difficulties associated with near-collisions also arise in problems of classical celestial mechanics, in particular, in the study of the motion of a comet in the sphere of action of a large planet (Ed. note by V.A. Brumberg).

REFERENCES

  1. L. Euler, “Problema algebraicum ob affectiones prorsus singulares memorabile,” Novi Comm. Acad. Sci. Petrop. 15, 75–106 (1770).

    Google Scholar 

  2. O. Rodrigues, “Des lois geometriques qui regissent les deplacements d’un systems olide dans l’espase, et de la variation des coordonnee sprovenant de ses deplacement sconsideeres independamment des causes qui peuvent les produire,” J. Math. Pureset Appl. 5, 380–440 (1840).

    Google Scholar 

  3. E. T. Whittaker, A Treatise on the Analytical Dynamics (Univ. Press, Cambridge, 1927).

    Google Scholar 

  4. A. I. Lurie, Analytical Mechanics (Fizmatlit, Moscow, 1961) [in Russian].

    Google Scholar 

  5. Yu. N. Chelnokov, “On integration of kinematic equations of a rigid body’s screw-motion,” Appl. Math. Mech. 44 (1), 19–23 (1980).

    MathSciNet  Google Scholar 

  6. Yu. N. Chelnokov, “On one helical method for describing the motion of a rigid body,” in Collection of Scientific and Methodological Articles on Theoretical Mechanics (Vysshaya shkola, Moscow, 1981), issue 11, pp. 129–138 [in Russian].

  7. Yu. N. Chelnokov, “One form of the equations of inertial navigation,” Mech. Solids 16 (5), 16–23 (1981).

    MathSciNet  Google Scholar 

  8. W. R. Hamilton, Lectures on Quaternions (Hodges and Smith, Dublin, 1853).

    Google Scholar 

  9. V. N. Branets and I. P. Shmygalevskii, Quaternions Application to the Problems of Solid Bodies Orientation (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  10. Yu. N. Chelnokov, Quaternion and Biquaternion Models and Methods of Rigid Body Mechanics and Their Applications. Geometry and Kinematics of Motion (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  11. V. F. Zhuravlev, Fundamentals of Theoretical Mechanics (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  12. W. Clifford, “Preliminary sketch of biquaternions,” Proc. London Math. Soc., No. 4, 381–395 (1873).

  13. A. P. Kotelnikov, Screw Calculus and Some of Its Applications to Geometry and Mechanics (Kazan, 1895) [in Russian].

    Google Scholar 

  14. A. P. Kotelnikov, “Screws and complex numbers,” Izv. Fiz.-Mat. O-va Kazan. Univ., Ser. 2, No. 6, 23–33 (1896).

  15. A. P. Kotelnikov, “Theory of vectors and complex numbers,” in Some Applications of Lobachevsky’s Ideas in Mechanics and Physics (Gostekhizdat, Moscow, 1950), pp. 7–47 [in Russian].

    Google Scholar 

  16. V. N. Branets and I. P. Shmyglevskii, Introduction to the Theory of Strapdown Inertial Navigation Systems (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  17. J. W. Gibbs, Scientific Papers (Dover, New York, 1961).

  18. J. W. Gibbs, Vector Analysis (Scribners, New York, 1901).

    Google Scholar 

  19. Stiefel, E.L. and Scheifele, G., Linear and Regular Celestial Mechanics (Springer, Berlin, 1971).

    Google Scholar 

  20. R. Bellman, Introduction to Matrix Analysis (McGraw-Hill, New York, 1960).

    Google Scholar 

  21. B. F. Ickes, “A new method for performing digital control system attitude computations using quaternions,” AIAA J., No. 8, 13–17 (1970).

  22. P. K. Plotnikov and Yu. N. Chelnokov, “Application of quaternion matrices in the theory of finite rotation of a rigid body,” in Collection of Scientific and Methodological Articles on Theoretical Mechanics (Vysshaya shkola, Moscow, 1981), Issue 11, pp. 122–129 [in Russian].

  23. F. M. Dimentberg, Theory of Screws and Its Applications (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  24. Yu. N. Chelnokov, “ Solutions stability of biquaternion kinematic equation for the solid helical motion,” in Collection of Scientific and Methodological Articles on Theoretical Mechanics (Vysshaya shkola, Moscow, 1983), Issue. 13, pp. 103–109 [in Russian].

  25. Yu. N. Chelnokov, “Some algorithmic problems for determining object orientation by strapdown inertial navigation systems,” Extended Abstract of Candidate’s Dissertation in Technical Sciences (Leningrad Electrotechnical Institute named after V. I. Ul’yanov (Lenin), Leningrad, 1974).

  26. Yu. N. Chelnokov, “Quaternion and biquaternion methods in problems on rigid body mechanics and material systems,” Extended Abstract of Doctoral Dissertation in Mathematics and Physics (Institute for Problems in Mechanics of the USSR Acad. Sci., Moscow, 1987).

  27. Yu. N. Chelnokov, Quaternion Models and Methods of Dynamics, Navigation and Motion Control (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  28. W. Velte, “Concerning the regularizing KS-transformation,” Celest. Mech. 17, 395–403 (1978).

    ADS  MathSciNet  Google Scholar 

  29. M. D. Vivarelli, “The KS-transformation in hypercomplex form,” Celest. Mech. 29, 45–50 (1983).

    ADS  MathSciNet  Google Scholar 

  30. M. D. Vivarelli, “Geometrical and physical outlook on the cross product of two quaternions,” Celest. Mech. 41, 359–370 (1988).

    ADS  MathSciNet  Google Scholar 

  31. M. D. Vivarelli, “On the connection among three classical mechanical problems via the hypercomplex KS-transformation,” Celest. Mech. Dyn. Astron. 50, 109–124 (1991).

    ADS  MathSciNet  Google Scholar 

  32. O. B. Shagov, “On two types of equations for the artificial Earth satellite motion in oscillatory form,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 3–8 (1990).

  33. A. Deprit, A. Elipe, and S. Ferrer, “Linearization: Laplace vs. Stiefel,” Celest. Mech. Dyn. Astron. 58, 151–201 (1994).

    ADS  MathSciNet  Google Scholar 

  34. J. Vrbik, “Celestial mechanics via quaternions,” Can. J. Phys. 72, 141–146 (1994).

    ADS  CAS  Google Scholar 

  35. J. Vrbik, “Perturbed Kepler problem in quaternionic form,” J. Phys. A: Math. General 28, 193–198 (1995).

    MathSciNet  Google Scholar 

  36. J. Waldvogel, “Quaternions and the perturbed Kepler problem,” Celest. Mech. Dyn. Astron. 95, 201–212 (2006).

    ADS  MathSciNet  Google Scholar 

  37. J. Waldvogel, “Quaternions for regularizing celestial mechanics: the right way,” Celest. Mech. Dyn. Astron. 102 (1), 149–162 (2008).

    ADS  MathSciNet  Google Scholar 

  38. P. Saha, “Interpreting the Kustaanheimo-Stiefel transform in gravitational dynamics,” Mon. Not. R. Astron. Soc. 400, 228–231 (2009). https://doi.org/10.1111/j.1365-2966.2009.15437.x

    Article  ADS  Google Scholar 

  39. L. Zhao, “Kustaanheimo-Stiefel regularization and the quadrupolar conjugacy,” Regular Chaotic Dyn. 20 (1), 19–36 (2015). https://doi.org/10.1134/S1560354715010025

    Article  ADS  MathSciNet  Google Scholar 

  40. J. Roa, H. Urrutxua, and J. Pelaez, “Stability and chaos in Kustaanheimo-Stiefel space induced by the Hopf fibration,” Mon. Not. R. Astron. Soc. 459 (3), 2444–2454 (2016). https://doi.org/10.1093/mnras/stw780.arXiv:1604.06673

    Article  ADS  Google Scholar 

  41. J. Roa and J. Pelaez, “The theory of asynchronous relative motion II: universal and regular solutions,” Celest. Mech. Dyn. Astron. 127, 343–368 (2017).

    ADS  MathSciNet  Google Scholar 

  42. S. Breiter and K. Langner, “Kustaanheimo-Stiefel transformation with an arbitrary defining vector,” Celest. Mech. Dyn. Astron. 128, 323–342 (2017).

    ADS  MathSciNet  Google Scholar 

  43. S. Breiter and K. Langner, “The extended Lissajous-Levi-Civita transformation,” Celest. Mech. Dyn. Astron. 130, 68 (2018). https://doi.org/10.1007/s10569-018-9862-4

    Article  ADS  MathSciNet  Google Scholar 

  44. S. Breiter and K. Langner, “The Lissajous-Kustaanheimo–Stiefel transformation,” Celest. Mech. Dyn. Astron. 131, 9 (2019). https://doi.org/10.1007/s10569-019-9887-3

    Article  ADS  MathSciNet  Google Scholar 

  45. S. Ferrer and F. Crespo, “Alternative angle-based approach to the KS-Map. An interpretation through symmetry,” J. Geom. Mech. 10 (3), 359–372 (2018).

    MathSciNet  Google Scholar 

  46. Yu. N. Chelnokov, “On regularization of the equations of the three-dimensional two body problem,” Mech. Solids 16 (6), 1–10 (1981).

    Google Scholar 

  47. Yu. N. Chelnokov, “Regular equations of the three-dimensional two body problem,” Mech. Solids 19 (1), 1–7 (1984).

    MathSciNet  Google Scholar 

  48. Yu. N. Chelnokov, “Quaternion methods in problems of material point perturbed motion. Pt. 1: general theory. Applications to the problems on regularization and satellite motion,” Available from VINITI (Moscow, 13.12.85), No. 218628-B.

  49. Yu. N. Chelnokov, “Quaternion methods in problems of material point perturbed motion. Pt. 2: Three-dimensional problem of unperturbed central motion. Problem with initial conditions,” Available from VINITI (Moscow, 13.12.85), No. 8629-B.

  50. Yu. N. Chelnokov, “Application of quaternions in the theory of orbital motion of an artificial satellite. I,” Cosmic Res. 30 (6), 612–621 (1992).

    ADS  Google Scholar 

  51. Yu. N. Chelnokov, “Application of quaternions in the theory of orbital motion of an artificial satellite. II,” Cosmic Res. 31 (3), 409–418 (1993).

    Google Scholar 

  52. Yu. N. Chelnokov, “Quaternion regularization and stabilization of perturbed central motion. I,” Mech. Solids 28 (1), 16–25 (1993).

    Google Scholar 

  53. Yu. N. Chelnokov, “Quaternion regularization and stabilization of perturbed central motion. II,” Mech. Solids 28 (2), 1–12 (1993).

    Google Scholar 

  54. Yu. N. Chelnokov, “Analysis of optimal motion control for a material point in a central field with application of quaternions,” J. Comput. Syst. Sci. Int. 46 (5), 688–713 (2007).

    MathSciNet  Google Scholar 

  55. Yu. N. Chelnokov, “Quaternion regularization in celestial mechanics and astrodynamics and trajectory motion control. I,” Cosmic Res. 51 (5), 353–364 (2013). https://doi.org/10.1134/S001095251305002X

    Article  ADS  Google Scholar 

  56. Yu. N. Chelnokov, “Quaternion regularization in celestial mechanics and astrodynamics and trajectory motion control. II,” Cosmic Res. 52 (4), 350–361 (2014). https://doi.org/10.1134/S0010952514030022

    Article  Google Scholar 

  57. Yu. N. Chelnokov, “Quaternion regularization in celestial mechanics and astrodynamics and trajectory motion control. III,” Cosmic Res. 53 (5), 394–409 (2015). https://doi.org/10.1134/S0010952515050044

    Article  ADS  Google Scholar 

  58. Yu. N. Chelnokov, “Perturbed spatial two-body problem: regular quaternion equations of relative motion,” Mech. Solids 54 (2), 169–178 (2019). https://doi.org/10.3103/S0025654419030075

    Article  ADS  Google Scholar 

  59. Yu. N. Chelnokov, “Quaternion equations of disturbed motion for an artificial Earth satellite,” Cosmic Res. 57 (2), 101–114 (2019). https://doi.org/10.1134/S0010952519020023

    Article  ADS  Google Scholar 

  60. Yu. N. Chelnokov, “Quaternion methods and models of regular celestial mechanics and astrodynamics,” Appl. Math. Mech. 43 (1), 21–80 (2022). https://doi.org/10.1007/s10483-021-2797-9

    Article  MathSciNet  Google Scholar 

  61. T. V. Bordovitsyna, Modern Numerical Methods in Celestial Mechanics (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  62. T. V. Bordovitsyna and V. A. Avdyushev, Motion Theory for Artificial Earth Satellites. Analytical and Numerical Methods (Tomsk State Univ., Tomsk, 2007) [in Russian].

    Google Scholar 

  63. T. Fukushima, “Efficient orbit integration by linear transformation for Kustaanheimo-Stiefel regularization,” Astron. J. 129 (5), 2496 (2005). https://doi.org/10.1086/429546

    Article  ADS  Google Scholar 

  64. T. Fukushima, “Numerical comparison of two-body regularizations,” Astron. J. 133 (6), 2815 (2007).

    ADS  Google Scholar 

  65. J. Pelaez, J. M. Hedo, and P. A. Rodriguez, “A special perturbation method in orbital dynamics,” Celest. Mech. Dyn. Astron. 97, 131–150 (2007). https://doi.org/10.1007/s10569-006-9056-3

    Article  ADS  MathSciNet  Google Scholar 

  66. G. Baù, C. Bombardelli, J. Pelaez, and E. Lorenzini, “Non-singular orbital elements for special perturbations in the two-body problem,” Mon. Not. R. Astron. Soc. 454, 2890–2908 (2015).

    ADS  Google Scholar 

  67. D. Amato, C. Bombardelli, G. Baù, V. Morand, and A. J. Rosengren, “Non-averaged regularized formulations as an alternative to semi-analytical orbit propagation methods,” Celest. Mech. Dyn. Astron. 131, 21 (2019). https://doi.org/10.1007/s10569-019-9897-1

    Article  ADS  MathSciNet  Google Scholar 

  68. G. Baù and J. Roa, “Uniform formulation for orbit computation: the intermediate elements,” Celest. Mech. Dyn. Astron. 132, 10 (2020). https://doi.org/10.1007/s10569-020-9952-y

    Article  ADS  MathSciNet  Google Scholar 

  69. Yu. N. Chelnokov and M. Yu. Loginov, “New quaternion models of spaceflight regular mechanics and their applications to the problems of motion prediction for space bodies and in inertial navigation in space,” in Proc. 28th St. Petersburg Conf. on Integrated Navigation Systems (St. Petersburg, 2021), pp. 292–295 [in Russian].

  70. Yu. N. Chelnokov, Ya. G. Sapunkov, M. Yu. Loginov, and A. F. Shchekutiev, “Forecast and correction of spacecraft orbital motion using regular quaternion equations and their solutions in Kustaanheimo-Stiefel variables and isochronic serivatives,” Prikl. Mat. Mekh. 87 (2), 124–156 (2023).

    Google Scholar 

  71. Yu. N. Chelnokov, “Quaternion regularization of the eguations of the perturbed spatial restricted three-body problem: I,” Mech. Solids 52 (6), 613–639 (2017). https://doi.org/10.3103/S0025654417060036

    Article  ADS  Google Scholar 

  72. L. Euler, “De motu rectilineo trium corporum se mutuo attrahentium,” Nov. Comm. Petrop. 11, 144–151 (1765).

    Google Scholar 

  73. T. Levi-Civita, “Traettorie singolari ed urti nel problema ristretto dei tre corpi,” Ann. Mat. Pura Appl. 9, 1–32 (1904).

    Google Scholar 

  74. T. Levi-Civita, “Sur la regularization du probleme des trois corps,” Acta Math. 42, 99–144 (1920). https://doi.org/10.1007/BF02418577

    Article  MathSciNet  Google Scholar 

  75. T. Levi-Civita, “Sur la resolution qualitative du probleme restreint des trois corps,” Opere Math., No. 2, 411–417 (1956).

  76. P. Kustaanheimo, “Spinor regularization of the Kepler motion,” Ann. Univ. Turku 73, 3–7 (1964). https://doi.org/10.1086/518165

    Article  MathSciNet  Google Scholar 

  77. P. Kustaanheimo and E. Stiefel, “Perturbation theory of Kepler motion based on spinor regularization,” J. Reine Anqew. Math. 218, 204–219 (1965).

    MathSciNet  Google Scholar 

  78. V. A. Brumberg, Analytical Algorithms of Celestial Mechanics (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  79. P. Musen, “On Stromgren’s method of special perturbations,” J. Astron. Sci. 8, 48–51 (1961).

    Google Scholar 

  80. P. Musen, NASA TN D-2301 (1964), p. 24.

    Google Scholar 

  81. H. Hopf, “Uber die Abbildung der dreidimensionalen Sphare auf die Kugelflache,” Math. Ann. 104, 637–665 (1931).

    MathSciNet  Google Scholar 

  82. K. F. Sundman, “Memoire sur le probleme des trois crops,” Acta Math. 36, 105–179 (1912).

    MathSciNet  Google Scholar 

  83. K. Bohlin, “Note sur le probleme des deux corps et sur une integration nouvelle dans le problem des trois corps,” Bull. Astron. 28, 113–119 (1911).

    Google Scholar 

  84. C. A. Burdet, “Theory of Kepler motion: the general perturbed two body problem,” Z. Angew. Math. Phys. 19, 345–368 (1968).

    Google Scholar 

  85. C. A. Burdet, “Le mouvement Keplerien et les oscillateurs harmoniques,” J. Reine Angew. Math. 238, 71–84 (1969).

    ADS  MathSciNet  Google Scholar 

  86. E. Study, “Von der Bewegungen und Umlegungen,” Math. Ann. 39, 441–566 (1891).

    MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Scientific Foundation (project no. 22-21-00218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Chelnokov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by E. Seifina

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chelnokov, Y.N. Quaternion and Biquaternion Methods and Regular Models of Analytical Mechanics (Review). Mech. Solids 58, 2450–2477 (2023). https://doi.org/10.3103/S0025654423070051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423070051

Keywords:

Navigation