Skip to main content
Log in

Uniform formulation for orbit computation: the intermediate elements

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We present a new method for computing orbits in the perturbed two-body problem: the position and velocity vectors of the propagated object in Cartesian coordinates are replaced by eight orbital elements, i.e. constants of the unperturbed motion. The proposed elements are uniformly valid for any value of the total energy. Their definition stems from the idea of applying Sundman’s time transformation in the framework of the projective decomposition of motion, which is the starting point of the Burdet–Ferrándiz linearisation, combined with Stumpff’s functions. In analogy with Deprit’s ideal elements, the formulation relies on a special reference frame that evolves slowly under the action of external perturbations. We call it the intermediate frame, hence the name of the elements. Two of them are related to the radial motion, and the next four, given by Euler parameters, fix the orientation of the intermediate frame. The total energy and a time element complete the state vector. All the necessary formulae for extending the method to orbit determination and uncertainty propagation are provided. For example, the partial derivatives of the position and velocity with respect to the intermediate elements are obtained explicitly together with the inverse partial derivatives. Numerical tests are included to assess the performance of the proposed special perturbation method when propagating the orbit of comets C/2003 T4 (LINEAR) and C/1985 K1 (Machholz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Pitkin (1965) calls universal variables the functions \(U_n=\chi ^n c_n\), which will be defined in Eq. (11) and named universal functions.

  2. The secular terms are completely removed if, in addition to properly prescribing the variation of \(t_0\), we include in the state vector the difference between the true anomalies of the current position at time t and of the departure point at time \(t_0\). The drawback of this approach is that the formulation becomes singular when the angular momentum vanishes, and therefore, it is not universal.

  3. This result for \(\rho \) with \(\kappa =h\) is called Binet’s formula, after Jacques Binet (1786–1856), and it was already known to Isaac Newton (1642–1726).

  4. With the adjective orbital, we mean that the reference frame is defined by the osculating plane of motion, and more specifically that one axis has the same direction of the angular momentum vector.

  5. This method is known in the literature as Burdet–Ferrándiz regularisation. Ferrándiz (1988) achieved the same linearisation in the framework of the Hamiltonian formalism (see Deprit et al. 1994).

  6. In Baù et al. (2015) the elements \(\wp _1\), \(\wp _2\), \(\lambda ^{-1}\) are denoted by \(\lambda _1\), \(\lambda _2\), \(\lambda _3\), respectively, and the independent variable \(\chi \) by \(\varphi \).

  7. In Baù et al. (2016) the elements \(\wp _1\), \(\wp _2\), \(-\lambda ^{-1}\) are denoted by \(\lambda _1\), \(\lambda _2\), \(\lambda _3\), respectively, and the independent variable \(\chi \) by \(\varphi \).

  8. In the method EDromo (Baù et al. 2015), it is \(\alpha =1\) and secular terms are not present in the derivatives of \(\wp _1\), \(\wp _2\) (see 36).

  9. Unfortunately, the secular terms are not completely removed since they are contained in the expression of \({\dot{t}}_0\) (see Battin 1999, pp. 510, 511).

  10. Note that the terms with \(\chi ^3\), which stem from \({\tilde{U}}_5\), \(U_5\), cancel out.

  11. These terms contain the product of a trigonometric function of \(\chi \) and some power of \(\chi \).

  12. We also used the relation

    $$\begin{aligned} \cos ^2\frac{\nu }{2}=\frac{\left[ r_0U_0\left( \frac{1}{2}\chi ;\alpha \right) +\sigma _0U_1\left( \frac{1}{2}\chi ;\alpha \right) \right] ^{2}}{rr_0}, \end{aligned}$$

    which can be obtained from Eqs. (17), (22), and (25).

  13. The time \(t_*\) is usually chosen as the average of the observation times.

  14. In fact, it can be shown that \(rd=2c^2u_1^2\left( \frac{1}{2}\chi ;\bar{\alpha }\right) /\sin ^2\frac{\nu }{2}\).

References

  • Allan, R.R., Ward, G.N.: Planetary equations in terms of vectorial elements. Math. Proc. Camb. Philos. Soc. 59(3), 669–677 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  • Amato, D., Baù, G., Bombardelli, C.: Accurate orbit propagation in the presence of planetary close encounters. Mon. Not. R. Astron. Soc. 470(2), 2079–2099 (2017)

    ADS  Google Scholar 

  • Amato, D., Bombardelli, C., Baù, G., Morand, V., Rosengren, A.J.: Non-averaged regularized formulations as an alternative to semi-analytical orbit propagation methods. Celest. Mech. Dyn. Astron. 131(5), 21 (2019)

    ADS  MathSciNet  Google Scholar 

  • Battin, R.H.: Astronautical Guidance. McGraw-Hill Inc, New York (1964)

    Google Scholar 

  • Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series, revised edn. AIAA, Reston, VA (1999)

    MATH  Google Scholar 

  • Baù, G., Urrutxua, H., Peláez, J.: Edromo: an accurate propagator for elliptical orbits in the perturbed two-body problem. Adv. Astronaut. Sci. 152, 379–399 (2014). Proceedings of the 24th AAS/AIAA Space Flight Mechanics Meeting, January 26-30, 2014, Santa Fe, New Mexico

    Google Scholar 

  • Baù, G., Bombardelli, C., Peláez, J., Lorenzini, E.: Non-singular orbital elements for special perturbations in the two-body problem. Mon. Not. R. Astron. Soc. 454(3), 2890–2908 (2015)

    ADS  Google Scholar 

  • Baù, G., Milani, A., Bombardelli, C., Amato, D.: New orbital elements for accurate orbit propagation in the Solar System. https://indico.esa.int/event/111/contributions/288/attachments/418/463/PaperICATT.pdf, presented at the 6th International Conference on Astrodynamics Tools and Techniques, 14–17 March 2016, Darmstadt (2016)

  • Bohlin, K.: Note sur le probléme des deux corps et sur une intégration nouvelle dans le probléme des trois corps. Bull. Astron. 28, 113–119 (1911)

    MATH  Google Scholar 

  • Bond, V.R.: The uniform, regular differential equations of the KS transformed perturbed two-body problem. Celest. Mech. 10, 303–318 (1974)

    ADS  MathSciNet  MATH  Google Scholar 

  • Born, G.H., Christensen, J., Seversike, L.K.: Special perturbations employing osculating reference states. Celest. Mech. 9, 41–53 (1974)

    ADS  MATH  Google Scholar 

  • Broucke, R.A.: Regularized special perturbation techniques using Levi-Civita variables. In: 3rd and 4th Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, paper 66-8 (1966)

  • Broucke, R.A., Cefola, P.: On the equinoctial orbit elements. Celest. Mech. 5, 303–310 (1972)

    ADS  MATH  Google Scholar 

  • Broucke, R.A., Cefola, P.: A note on the relations between true and eccentric anomalies in the two-body problem. Celest. Mech. 7, 388–389 (1973)

    ADS  MATH  Google Scholar 

  • Broucke, R.A., Lass, H.: On redundant variables in Lagrangian mechanics, with applications to perturbation theory and KS regularization. Celest. Mech. 12(3), 317–325 (1975)

    ADS  MathSciNet  MATH  Google Scholar 

  • Burdet, C.A.: Theory of Kepler motion: the general perturbed two body problem. Zeitschrift für angewandte Mathematik und Physik 19, 345–368 (1968)

    ADS  MATH  Google Scholar 

  • Burdet, C.A.: Le mouvement Keplerien et les oscillateurs harmoniques. Journal für die reine und angewandte Mathematik 238, 71–84 (1969)

    ADS  MathSciNet  MATH  Google Scholar 

  • Chelnokov, Y.N.: Application of quaternions in the theory of orbital motion of a satellite. I. Cosm. Res. 30(6), 612–621 (1992)

    ADS  Google Scholar 

  • Chelnokov, Y.N.: Application of quaternions to artificial satellite orbital motion. II. Cosm. Res. 31(3), 231–240 (1993)

    ADS  Google Scholar 

  • Crawford, D.F.: Two-body perturbation matrix. AIAA J. 7(6), 1163–1164 (1969)

    ADS  Google Scholar 

  • Danby, J.M.A.: Fundamentals of Celestial Mechanics, 2nd edn. Willmann-Bell, Richmond, VA (1992)

    Google Scholar 

  • Deprit, A.: Concerning Kustaanheimo-Stiefel’s Regularization. Zeitschrift für angewandte Mathematik und Physik 19, 369–372 (1968)

    ADS  MATH  Google Scholar 

  • Deprit, A.: Ideal elements for perturbed Keplerian motions. J. Res. Natl. Bureau Standards 79B (Math. Sci.)(1-2):1–15 (1975)

    ADS  MathSciNet  MATH  Google Scholar 

  • Deprit, A., Elipe, A., Ferrer, S.: Linearization: Laplace vs Stiefel. Celest. Mech. Dyn. Astron. 58(2), 151–201 (1994)

    ADS  MathSciNet  Google Scholar 

  • Der, G.J.: An elegant state transition matrix. J. Astron. Sci. 45(4), 371–390 (1997)

    MathSciNet  Google Scholar 

  • Everhart, E., Pitkin, E.T.: Universal variables in the two-body problem. Am. J. Phys. 51(8), 712–717 (1983)

    ADS  Google Scholar 

  • Ferrándiz, J.M.: A general canonical transformation increasing the number of variables with application in the two-body problem. Celest. Mech. 41, 343–357 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  • Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reston, VA (1980)

    MATH  Google Scholar 

  • Goodyear, W.H.: Completely General closed-form solution for coordinates and partial derivatives of the two-body problem. Astron. J. 70(3), 189–192 (1965)

    ADS  MathSciNet  Google Scholar 

  • Goodyear, W.H.: A general method for the computation of Cartesian coordinates and partial derivatives of the two-body problem. Tech. Rep. CR-522, NASA (1966)

  • Hansen, P.A.: Auseinandersetzung einer zweckmässigen Methode zur Berechnung der absoluten Störungen der kleinen Planeten. Abhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften 5, 41–218 (1857)

    Google Scholar 

  • Herrick, S.: “Nearly parabolic” and “nearly rectilinear” orbits. Astron. J. 51, 123 (1945)

    ADS  Google Scholar 

  • Herrick, S.: Tables for Rocket and Comet Orbits. U. S. National Bureau of Standards, Applied Mathematics Series, 20, Washington, D. C (1953)

  • Herrick, S.: Positions, velocities, ephemerides referred to the dynamical center. Astrodynamical report, No. 7, TN-60-773, Air Force Office of Scientific Research (1960)

  • Herrick, S.: Universal variables. Astron. J. 70(4), 309–315 (1965)

    ADS  MathSciNet  Google Scholar 

  • Herrick, S.: Astrodynamics. Von Nostrand Reinhold, London (1971)

    MATH  Google Scholar 

  • Junkins, J., Akella, M.R., Alfriend, K.T.: Non-Gaussian error propagation in orbital mechanics. J. Astron. Sci. 44(4), 541–563 (1996)

    Google Scholar 

  • Kustaanheimo, P.: Stiefel EL (1965) Perturbation theory of Kepler motion based on spinor regularization. Journal für die reine und angewandte Mathematik 218, 204–219 (1965)

    MATH  Google Scholar 

  • Lara, M.: Note on the ideal frame formulation. Celest. Mech. Dyn. Astron. 129, 137–151 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • Marsden, B.G., Sekanina, Z., Yeomans, D.K.: Comets and nongravitational forces. V. Astron. J. 78(2), 211–225 (1973)

    ADS  Google Scholar 

  • Milani, A., Gronchi, G.F.: Theory of Orbit Determination. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  • Milanković, M.: O upotrebi vektorskih elemenata u računu planetskih poremećaja. Glas SAN, Beograd CLXXXI:1–72 (1939)

  • Peláez, J., Hedo, J.M., de Andrés, P.R.: A special perturbation method in orbital dynamics. Celest. Mech. Dyn. Astron. 97(2), 131–150 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  • Pitkin, E.T.: A regularized approach to universal orbit variables. AIAA J. 3, 1508–1511 (1965)

    ADS  Google Scholar 

  • Pitkin, E.T.: Integration with universal variables. AIAA J. 4(3), 531–534 (1966)

    ADS  MathSciNet  MATH  Google Scholar 

  • Roa, J.: Regularization in Orbital Mechanics. Theory and Practice. De Gruyter, Berlin, Boston (2017)

    MATH  Google Scholar 

  • Roa, J., Kasdin, N.J.: Alternative set of nonsingular quaternionic orbital elements. J. Guid. Control Dyn. 40(11), 2737–2751 (2017)

    ADS  Google Scholar 

  • Roa, J., Peláez, J.: Orbit propagation in Minkowskian geometry. Celest. Mech. Dyn. Astron. 123(1), 13–43 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • Roa, J., Peláez, J.: The theory of asynchronous relative motion I: time transformations and nonlinear corrections. Celest. Mech. Dyn. Astron. 127(3), 301–330 (2017a)

    ADS  MathSciNet  MATH  Google Scholar 

  • Roa, J., Peláez, J.: The theory of asynchronous relative motion II: universal and regular solutions. Celest. Mech. Dyn. Astron. 127(3), 343–368 (2017b)

    ADS  MathSciNet  MATH  Google Scholar 

  • Rosengren, A.J., Scheeres, D.J.: On the Milankovitch orbital elements for perturbed Keplerian motion. Celest. Mech. Dyn. Astron. 118(3), 197–200 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  • Roy, A.E., Moran, P.E.: Studies in the application of recurrence relations to special perturbation methods. Celest. Mech. 7(2), 236–255 (1973)

    ADS  MATH  Google Scholar 

  • Scheifele, G.: On nonclassical canonical systems. Celest. Mech. 2, 296–310 (1970)

    ADS  MATH  Google Scholar 

  • Sconzo, P.: A heuristic approach to the introduction of a universal variable. Memorie della Società Astronomica Italiana 38, 85–105 (1967)

    ADS  Google Scholar 

  • Shefer, V.A.: Variational equations in parametric variables and transformation of their solutions. Cosm. Res. 45(4), 348–353 (2007)

    ADS  Google Scholar 

  • Shepperd, S.W.: Universal Keplerian state transition matrix. Celest. Mech. 35, 129–144 (1985)

    ADS  MATH  Google Scholar 

  • Sitarski, G.: Correction of cometary orbits in rectangular coordinates. Acta Astron. 17(1), 65–72 (1967)

    ADS  Google Scholar 

  • Sperling, H.: Computation of Keplerian conic sections. Am. Rocket Soc. J. 31(5), 660–661 (1961)

    Google Scholar 

  • Stiefel, E., Rössler, M., Waldvogel, J., Burdet, C.A.: Methods of Regularization for Computing Orbits in Celestial Mechanics. Tech. Rep. CR-769, NASA, Washington, D. C (1967)

  • Stiefel, E.L., Scheifele, G.: Linear and Regular Celestial Mechanics. Springer, Berlin (1971)

    MATH  Google Scholar 

  • Stumpff, K.: Neue Formeln und Hilfstafeln zur Ephemeridenrechnung. Astron. Nachrichten 275, 108–128 (1947)

    ADS  MathSciNet  MATH  Google Scholar 

  • Stumpff, K.: Himmelsmechanik. VEB-Verlag, Berlin (1959)

    MATH  Google Scholar 

  • Stumpff, K.: Calculation of ephemerides from initial values. Tech. Rep. TN D-1415, NASA (1962)

  • Sundman, K.F.: Mémoire sur le problème des trois corps. Acta Math. 36, 105–179 (1913)

    MathSciNet  MATH  Google Scholar 

  • Urrutxua, H., Sanjurjo-Rivo, M., Peláez, J.: DROMO propagator revisited. Celest. Mech. Dyn. Astron. 124(1), 1–31 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  • Vitins, M.: Keplerian motion and gyration. Celest. Mech. 17, 173–192 (1978)

    ADS  MATH  Google Scholar 

  • Walker, M.J.H., Ireland, B., Owens, J.: A set of modified equinoctial orbital elements. Celest. Mech. 36, 409–419 (1985)

    ADS  MATH  Google Scholar 

  • Wong, P.: Nonsingular variation of parameter equations for computation of space trajectories. Am. Rocket Soc. J. 32, 264–265 (1962)

    MATH  Google Scholar 

Download references

Acknowledgements

The author G. Baù acknowledges the project MIUR-PRIN 20178CJA2B titled “New frontiers of Celestial Mechanics: theory and applications”. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We also thank Z. Knežević for providing us with the correct reference to the paper of M. Milanković and the reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Baù.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Avoiding secular terms, alternative formulation

When the total energy is negative (\(\mathscr {E}<0\)), secular terms that appear in the derivatives of the intermediate elements (Eqs. 6673) may deteriorate the accuracy of the predicted state in long-term propagations. The proposed formulation can be modified in order to overcome this drawback. The idea is inspired by the regularised methods presented in Stiefel et al (1967, chap. 1).

By setting \(\beta =1\), we can rewrite Eq. (7) as

$$\begin{aligned} r''=2\bar{\mathscr {E}} r+\mu +r(rF_{r}+2\mathscr {E}_K-2\bar{\mathscr {E}}), \end{aligned}$$

where \(\mathscr {E}_K=\mathscr {E}-\mathscr {U}\) is the Keplerian energy and \(\bar{\mathscr {E}}\) is the value taken by \(\mathscr {E}\) at the initial time of the propagation. The quantity \(\bar{\mathscr {E}}\) is a constant which is fixed by the initial position and velocity of the particle. Let us introduce

$$\begin{aligned} \bar{\alpha }=-2\bar{\mathscr {E}},\qquad \alpha =-2\mathscr {E},\qquad \delta \alpha =\bar{\alpha }-\alpha . \end{aligned}$$

The solution of \(r''=2\bar{\mathscr {E}} r+\mu \) is given by

$$\begin{aligned} r=r_0u_0(\chi ;\bar{\alpha })+\sigma _0u_1(\chi ;\bar{\alpha })+\mu u_2(\chi ;\bar{\alpha }), \end{aligned}$$
(100)

where we have introduced the universal functions (see Eq. 11):

$$\begin{aligned} u_{n}(\chi ;\bar{\alpha })=\chi ^n\sum _{k=0}^{\infty }(-1)^{k} \frac{(\bar{\alpha }\chi ^2)^k}{(n+2k)!},\quad n\in {\mathbb {N}}. \end{aligned}$$

The derivatives of \(u_n\) with respect to \(\chi \) do not contain secular terms. Following the same steps as in Sects. 2.3 and 2.4, we obtain

$$\begin{aligned} r_0'&= -ru_1(rF_r-2\mathscr {U}+\delta \alpha ),\\ \sigma _0'&= ru_0(rF_r-2\mathscr {U}+\delta \alpha ),\\ t_0'&= ru_2(rF_r-2\mathscr {U}+\delta \alpha ). \end{aligned}$$

Then, by substituting in Eq. (24) the expression of r in (100) we arrive at the Gaussian equation

$$\begin{aligned} \tan \frac{\nu }{2}=\frac{c\,u_1\left( \frac{1}{2}\chi ;\bar{\alpha }\right) }{r_0 u_0\left( \frac{1}{2}\chi ;\bar{\alpha }\right) +\sigma _0 u_1\left( \frac{1}{2}\chi ; \bar{\alpha }\right) }. \end{aligned}$$

Differentiation with respect to \(\chi \) yields

$$\begin{aligned} \nu '=\frac{2}{d}\Bigl [\frac{c}{r}(d-r_0)+\frac{r}{c}(rF_r-2\mathscr {U}) (\bar{\alpha }r_0u_2-\sigma _0u_1)-\frac{\alpha 'r}{2c}(r_0u_1+\sigma _0u_2)\Bigr ], \end{aligned}$$

where

$$\begin{aligned} d=2r_0+r\delta \alpha \,u_2. \end{aligned}$$

The expressions of \(r_0'\), \(\sigma _0'\), \(t_0'\), \(\nu '\) reported above do not contain secular terms for \(\bar{\mathscr {E}}<0\). Thus, we can select \(r_0\), \(\sigma _0\), \(\alpha \), \(t_0\) and four Euler parameters exactly as we did in Sect. 2.6, for the elements of a formulation of the perturbed two-body problem, which will be free of secular terms. The case \(d=0\) does not introduce additional singularities to those affecting the intermediate elements (see Sect. 2.6).Footnote 14 Finally, we note that the same relation as in (83) for \(c^2\) does not hold anymore, and we have to use instead

$$\begin{aligned} c^2=r_0(2\mu -r_0\bar{\alpha })-\sigma _0^2+\delta \alpha \,r^2. \end{aligned}$$

Partial derivatives of \(\iota _5\), \(\iota _6\), \(\iota _7\), \(\iota _8\) with respect to position and velocity at the initial time

We show a possible way of deriving formulae (98) and (99). We recall that \(\mathbf{e}_r\), \(\mathbf{e}_{\nu }\), \(\mathbf{e}_z\) are the unit vectors of the LVLH reference frame (see Eqs. 5). From the following relation for the angular momentum vector

$$\begin{aligned} \mathbf{r}\times {\dot{\mathbf{r}}}=h\mathbf{e}_z, \end{aligned}$$

we obtain

$$\begin{aligned} h\frac{\partial {\mathbf{e}}_z}{\partial {\mathbf{r}}}= V-\mathbf{e}_z\frac{\partial h}{\partial {\mathbf{r}}},\qquad h\frac{\partial {\mathbf{e}}_z}{\partial {\dot{\mathbf{r}}}}= R-\mathbf{e}_z\frac{\partial h}{\partial {\dot{\mathbf{r}}}}, \end{aligned}$$
(101)

where V, R are the skew-symmetric matrices defined by

$$\begin{aligned} V(1,2)&=v_3,&V(1,3)&=-v_2,&V(2,3)&=v_1,\\ R(1,2)&=-r_3,&R(1,3)&=r_2,&R(2,3)&=-r_1, \end{aligned}$$

with \(r_i=\mathbf{r}\cdot \mathbf{e}_i\), \(v_i={\dot{\mathbf{r}}}\cdot \mathbf{e}_i\), \(i=1,2,3\), and

$$\begin{aligned} \frac{\partial h}{\partial {\mathbf{r}}}={\mathbf{e}}_z^TV,\qquad \frac{\partial h}{\partial {\dot{\mathbf{r}}}}={\mathbf{e}}_z^TR. \end{aligned}$$

By inserting in Eqs. (101) the expression of \(\mathbf{e}_z\) as a function of I, \(\varOmega \), that is

$$\begin{aligned} \mathbf{e}_z=\mathbf{e}_1\sin \varOmega \sin I-\mathbf{e}_2\cos \varOmega \sin I+\mathbf{e}_3\cos I, \end{aligned}$$

we find

$$\begin{aligned} \frac{\partial \varOmega }{\partial {\mathbf{r}}}&= -\frac{1}{p\sin I}(\cos L+e\cos \omega ){\mathbf{e}}_z^T,&\frac{\partial \varOmega }{\partial {\dot{\mathbf{r}}}}&= \frac{r\sin L}{h\sin I}\,{\mathbf{e}}_z^T, \end{aligned}$$
(102)
$$\begin{aligned} \frac{\partial I}{\partial {\mathbf{r}}}&= \frac{1}{p}(\sin L+e\sin \omega ){\mathbf{e}}_z^T,&\frac{\partial I}{\partial {\dot{\mathbf{r}}}}&= \frac{r}{h}\cos L\,{\mathbf{e}}_z^T, \end{aligned}$$
(103)

where \(L=\omega +f\) is the argument of latitude.

Then, from the relation

$$\begin{aligned} \cos L=(\mathbf{e}_r\cdot \mathbf{e}_1)\cos \varOmega +(\mathbf{e}_r\cdot \mathbf{e}_2)\sin \varOmega , \end{aligned}$$

we can write

$$\begin{aligned} \frac{\partial {L}}{\partial {\mathbf{r}}}=-\frac{\partial {\varOmega }}{\partial {\mathbf{r}}}\cos I+ \frac{1}{r}{\mathbf{e}}_{\nu }^T,\qquad \frac{\partial {L}}{\partial {\dot{\mathbf{r}}}}=-\frac{\partial {\varOmega }}{\partial {\dot{\mathbf{r}}}}\cos I, \end{aligned}$$
(104)

where we have used

$$\begin{aligned} \frac{\partial {{\mathbf{e}}_r}}{\partial {{\mathbf{r}}}}=(I_d-\mathbf{e}_r{\mathbf{e}}_r^T), \end{aligned}$$

and \(I_d\) is the \(3\times 3\) identity matrix.

The Euler parameters \(\iota _5\), \(\iota _6\), \(\iota _7\), \(\iota _8\) at the initial time \(t_*\) are written in terms of L, \(\varOmega \), I by means of Eqs. (58), in which we set \(\varPsi =L\). Then, these expressions are differentiated with respect to \(\mathbf{r}\), \(\dot{\mathbf{r}}\), and taking into account (102), (103), and (104), we obtain formulae (98) and (99).

Partial derivatives of \(\iota _1',\ldots ,\iota _8'\) with respect to intermediate elements

Let us recall that \({{\varvec{\iota }}}=(\iota _1,\ldots ,\iota _8)^T\). We define

$$\begin{aligned} \mathcal{K}_n= & {} (rF_r-2\mathscr {U})\frac{\partial (ru_n)}{\partial {{\varvec{\iota }}}}+ ru_nF_r\frac{\partial r}{\partial {{\varvec{\iota }}}}-\frac{1}{2}(\sigma P_r+hP_{\nu }) \frac{\partial b_n}{\partial {{\varvec{\iota }}}}\\&+\frac{b_n}{4}\frac{\partial \iota '_3}{\partial {{\varvec{\iota }}}} +ru_n\Bigl (r\frac{\partial F_r}{\partial {{\varvec{\iota }}}}- 2\frac{\partial \mathscr {U}}{\partial {{\varvec{\iota }}}}\Bigr ),\quad n=1,2,4,5, \end{aligned}$$

where

$$\begin{aligned} u_1=-U_1,\quad u_2=U_0,\quad u_4=U_2,\quad u_5=\frac{\iota _2U_1-\iota _1\iota _3U_2}{c\iota _1}, \end{aligned}$$

and

$$\begin{aligned} b_1&= -\iota _1{\tilde{U}}_2-\iota _2{\tilde{U}}_3-2\mu U_2^2,\\ b_2&= \iota _1(2\chi +{\tilde{U}}_1)+\iota _2{\tilde{U}}_2+\mu ({\tilde{U}}_3-4U_3),\\ b_4&= \iota _1({\tilde{U}}_3-4U_3)+2\iota _2U_2^2+\mu ({\tilde{U}}_5-8U_5),\\ b_5&= \frac{1}{2\iota _1}\Bigl [\frac{r}{c}(\iota _1U_1+\iota _2U_2)-cU_3\Bigl ]. \end{aligned}$$

The desired derivatives take the form

$$\begin{aligned} \frac{\partial \iota '_n}{\partial {{\varvec{\iota }}}}&= \mathcal{K}_n,\quad n=1,2,4, \end{aligned}$$
(105)
$$\begin{aligned} \frac{\partial \iota '_3}{\partial {{\varvec{\iota }}}}&= -2\Bigl (P_r\frac{\partial \sigma }{\partial {{\varvec{\iota }}}} +P_{\nu }\frac{\partial h}{\partial {{\varvec{\iota }}}}+\sigma \frac{\partial P_r}{\partial {{\varvec{\iota }}}}+ h\frac{\partial P_{\nu }}{\partial {{\varvec{\iota }}}}\Bigr ), \end{aligned}$$
(106)
$$\begin{aligned} 2\frac{\partial \iota '_{k+4}}{\partial {{\varvec{\iota }}}}&= \frac{\alpha _k}{r}\Bigl (\frac{\partial h}{\partial {{\varvec{\iota }}}}-\frac{\partial c}{\partial {{\varvec{\iota }}}}+\frac{c-h}{r}\frac{\partial r}{\partial {{\varvec{\iota }}}}+r\mathcal{K}_5\Bigr )+\frac{r}{h}\Bigl (2F_z\frac{\partial r}{\partial {{\varvec{\iota }}}} -F_z\frac{r}{h}\frac{\partial h}{\partial {{\varvec{\iota }}}} +r\frac{\partial F_z}{\partial {{\varvec{\iota }}}}\Bigr )(\beta _kc_{\nu }+\gamma _ks_{\nu })\nonumber \\&\quad \, +\frac{r^2}{h}F_z\Bigl [(\gamma _kc_{\nu }-\beta _ks_{\nu })\frac{\partial \nu }{\partial {{\varvec{\iota }}}} +\frac{\partial \beta _k}{\partial {{\varvec{\iota }}}}c_{\nu }+\frac{\partial \gamma _k}{\partial {{\varvec{\iota }}}}s_{\nu }\Bigr ] +N\frac{\partial \alpha _k}{\partial {{\varvec{\iota }}}},\quad k=1,2,3,4, \end{aligned}$$
(107)

where \(c_{\nu }\), \(s_{\nu }\) denote \(\cos \nu \), \(\sin \nu \), respectively, and \({\alpha }_{k}, \beta _{k}, \gamma _{k}\) denote the kth component of the vectors \(\alpha , \beta , \gamma \) defined below:

$$\begin{aligned} \alpha =(-\iota _8,\,\iota _7,\,-\iota _6,\,\iota _5),\qquad \beta =(-\iota _6,\,\iota _5,\,\iota _8,\,-\iota _7),\qquad \gamma =(-\iota _7,\,-\iota _8,\,\iota _5,\,\iota _6). \end{aligned}$$

The partial derivatives of r, \(\sigma \), c, h, \(\nu \) are reported in Sect. 3.1. Moreover, we need the following relations:

$$\begin{aligned} \frac{\partial b_1}{\partial {{\varvec{\iota }}}}&= -\Bigl ({\tilde{U}}_2,\,{\tilde{U}}_3,\,\iota _1{\tilde{U}}_4 +\frac{3}{2}\iota _2{\tilde{U}}_5+4\mu U_2U_4-\chi (\iota _1{\tilde{U}}_3+\iota _2{\tilde{U}}_4 +2\mu U_2U_3),\,\mathbf{0}_5\Bigr ),\\ \frac{\partial b_2}{\partial {{\varvec{\iota }}}}&= \Bigl (2\chi +{\tilde{U}}_1,\,{\tilde{U}}_2,\,\frac{1}{2} \iota _1{\tilde{U}}_3+\iota _2{\tilde{U}}_4+\frac{3}{2}\mu ({\tilde{U}}_5-4U_5)+\chi (b_1-2\mu U_4),\,\mathbf{0}_5\Bigr ),\\ \frac{\partial b_4}{\partial {{\varvec{\iota }}}}&= \Bigl ({\tilde{U}}_3-4U_3,\,2U_2^2,\,\frac{3}{2}\iota _1 ({\tilde{U}}_5-4U_5)+4\iota _2U_2U_4+\frac{5}{2}\mu ({\tilde{U}}_7-8U_7)\\&\quad \, -\chi [\iota _1({\tilde{U}}_4-2U_4)+2\iota _2U_2U_3+\mu ({\tilde{U}}_6-4U_6)],\,\mathbf{0}_5\Bigr ),\\ 2\iota _1c\frac{\partial b_5}{\partial {{\varvec{\iota }}}}&= (\iota _1U_1+\iota _2U_2)\Bigl (\frac{\partial r}{\partial {{\varvec{\iota }}}}-\frac{r}{c}\frac{\partial c}{\partial {{\varvec{\iota }}}}\Bigr )-cU_3\frac{\partial c}{\partial {{\varvec{\iota }}}}+\frac{1}{2}\Bigl (\frac{2}{\iota _1}(c^2U_3-r\iota _2U_2),\,2rU_2,\\&\quad \, r(\iota _1U_3+2\iota _2U_4)-3c^2U_5+\chi [c^2U_4-r(\iota _1U_2+\iota _2U_3)],\,\mathbf{0}_5\Bigr ),\\ \frac{\partial u_5}{\partial {{\varvec{\iota }}}}&= \frac{1}{c\iota _1}\Bigl (-\frac{\iota _2}{\iota _1}U_1, \,U_1,\,\frac{1}{2}[\iota _2U_3-\chi (\iota _1U_1+\iota _2U_2)],\,\mathbf{0}_5\Bigr ) +u_5c\frac{\partial c}{\partial {{\varvec{\iota }}}}, \end{aligned}$$

where \(\mathbf{0}_5\in {\mathbb {R}}^5\) is a row vector of null entries. Assuming that \(\mathscr {U}\) depends only on \(\mathbf{r}\), t (see the remark in Sect. 2.6), we have

$$\begin{aligned} \frac{\partial \mathscr {U}}{\partial {{\varvec{\iota }}}}= \frac{\partial \mathscr {U}}{\partial {\mathbf{r}}}\frac{\partial {\mathbf{r}}}{\partial {{\varvec{\iota }}}}+ \frac{\partial \mathscr {U}}{\partial t}\frac{\partial t}{\partial {{\varvec{\iota }}}}. \end{aligned}$$
(108)

Let us denote by \(\mathbf{y}\) either \(\mathbf{F}\) or \(\mathbf{P}\), and with \(y_{\ell }\) the component of \(\mathbf{y}(\mathbf{r},\dot{\mathbf{r}},t)\) along one of the directions associated to \(\mathbf{e}_r\), \(\mathbf{e}_{\nu }\), \(\mathbf{e}_z\). Then, we can write

$$\begin{aligned} \frac{\partial y_{\ell }}{\partial {{\varvec{\iota }}}}=\mathbf{e}_{\ell }^T\frac{\partial {\mathbf{y}}}{\partial {{\varvec{\iota }}}} +{\mathbf{y}}^T\frac{\partial {\mathbf{e}}_{\ell }}{\partial {{\varvec{\iota }}}}, \end{aligned}$$
(109)

where

$$\begin{aligned} \frac{\partial {\mathbf{y}}}{\partial {{\varvec{\iota }}}}= \frac{\partial {\mathbf{y}}}{\partial {\mathbf{r}}}\frac{\partial {\mathbf{r}}}{\partial {{\varvec{\iota }}}}+ \frac{\partial {\mathbf{y}}}{\partial {\dot{\mathbf{r}}}}\frac{\partial {\dot{\mathbf{r}}}}{\partial {{\varvec{\iota }}}}+\frac{\partial {\mathbf{y}}}{\partial t}\frac{\partial t}{\partial {{\varvec{\iota }}}}. \end{aligned}$$
(110)

The matrices \(\partial {\mathbf{r}}/\partial {{\varvec{\iota }}}\), \(\partial {\dot{\mathbf{r}}}/{\partial {{\varvec{\iota }}}}\) are provided in Sect. 3.1, together with \(\partial {\mathbf{e}}_r/\partial {{\varvec{\iota }}}\), \(\partial {\mathbf{e}}_{\nu }/\partial {{\varvec{\iota }}}\), while \(\partial {\mathbf{e}}_z/\partial {{\varvec{\iota }}}\) can be easily obtained from the expression

$$\begin{aligned} \mathbf{e}_z=(2\iota _6\iota _8+2\iota _5\iota _7,\,2\iota _7\iota _8-2\iota _5\iota _6, \,\iota _5^2-\iota _6^2-\iota _7^2+\iota _8^2)^T. \end{aligned}$$
(111)

Also note that

$$\begin{aligned} \frac{\partial {\mathbf{F}}}{\partial {\mathbf{r}}}= \frac{\partial {\mathbf{P}}}{\partial {\mathbf{r}}}-\frac{\partial (\nabla \mathscr {U})}{\partial {\mathbf{r}}},\qquad \frac{\partial {\mathbf{F}}}{\partial t}= \frac{\partial {\mathbf{P}}}{\partial t}-\frac{\partial (\nabla \mathscr {U})}{\partial t}. \end{aligned}$$
(112)

Finally, we have

$$\begin{aligned} \frac{\partial t}{\partial {{\varvec{\iota }}}}=\Bigl (U_1,\,U_2,\,\frac{1}{2}[\iota _1U_3+2\iota _2U_4 +3\mu U_5-\chi (\iota _1U_2+\iota _2U_3+\mu U_4)],\,1,\,0,\,0,\,0,\,0\Bigr ).\nonumber \\ \end{aligned}$$
(113)

Identities for the universal functions

We collect the identities for the universal functions introduced in Eq. (11) that we used to derive some equations of this paper (see Battin 1999, Sects. 4.5, 4.6). For simplicity, we omit the argument \(\alpha \) in the universal functions. These formulae are:

$$\begin{aligned}&U_n(\chi )+\alpha U_{n+2}(\chi )=\frac{\chi ^n}{n!},\,\,\, n\in {\mathbb {N}},\\&U_0(\chi )^2+\alpha U_1(\chi )^2=1,\\&U_1(\chi )^2-U_0(\chi )U_2(\chi )=U_2(\chi ),\\&U_0(\chi )U_3(\chi )-U_1(\chi )U_2(\chi )=U_3(\chi )-\chi U_2(\chi ),\\&U_1(\chi )U_3(\chi )-U_2(\chi )^2=2U_4(\chi )-\chi U_3(\chi ), \end{aligned}$$

the double argument identities:

$$\begin{aligned} U_0(2\chi )&= U_0(\chi )^2-\alpha U_1(\chi )^2,\\ U_1(2\chi )&= 2U_0(\chi )U_1(\chi ),\\ U_2(2\chi )&= 2U_1(\chi )^2,\\ U_3(2\chi )&= 2U_3(\chi )+2U_1(\chi )U_2(\chi ),\\ U_5(2\chi )&= 2U_1(\chi )U_4(\chi )+\chi ^2 U_3(\chi )+2U_5(\chi ), \end{aligned}$$

and the differential relations:

$$\begin{aligned}&\frac{\partial U_0}{\partial \chi }=-\alpha U_1,\qquad \frac{\partial U_m}{\partial \chi }=U_{m-1}, \quad m\in \mathbb {N^+},\\&\frac{\partial U_n}{\partial \alpha }=\frac{1}{2}(nU_{n+2}-\chi U_{n+1}),\quad n\in {\mathbb {N}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baù, G., Roa, J. Uniform formulation for orbit computation: the intermediate elements. Celest Mech Dyn Astr 132, 10 (2020). https://doi.org/10.1007/s10569-020-9952-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-020-9952-y

Keywords

Navigation