Skip to main content
Log in

Current Challenges, Progress and Future Perspectives of Aluminum-Ion Batteries

  • SOLAR ENGINEERING MATERIALS SCIENCE
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

Today, the ever-growing demand for renewable energy resources urgently needs to develop reliable electrochemical energy storage systems. The rechargeable batteries have attracted huge attention as an essential part of energy storage systems and thus further research in this field is extremely important. Although traditional lithium-ion batteries (LIBs) have a wide range of applications, they still face a number of challenges associated with the high cost, safety, transportation, aging effect and sensitivity to temperature. To meet these demands, it is essential to pave the path toward post lithium-ion batteries. Aluminum-ion batteries (AIBs), which are considered as potential candidates for the next generation batteries, have gained much attention due to their low cost, safety, low dendrite formation, and long cycle life. In addition to being the third most abundant element in the Earth’s crust, aluminum is also cheap and has a high volumetric capacity of 8046 mAh cm–3. This review discusses the development of high-performance electrode materials for AIBs. Additionally, an overview of some challenges related to the utilization of electrode and electrolyte materials in AIBs has been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig 4.
Fig. 5.
Fig. 6.
Fig.7.

REFERENCES

  1. Yuan, X., et al., Latest advances in high-voltage and high-energy-density aqueous rechargeable batteries, Electrochem. Energy Rev., 2020, vol. 4, pp. 1–34.

    Article  Google Scholar 

  2. Dühnen, S., Betz, J., Kolek, M., Schmuch, R., Winter, M., and Placke, T., Toward green battery cells: Perspective on materials and technologies, Small Methods, 2020, vol. 4, no. 7, p. 2000039.

    Article  Google Scholar 

  3. Mandal, S., Thangarasu, S., Thong, P.T., Kim, S.-C., Shim, J.-Y., and Jung, H.Y., Positive electrode active material development opportunities through carbon addition in the lead-acid batteries: A recent progress, J. Power Sources, 2021, vol. 485, p. 229336.

    Article  Google Scholar 

  4. Blumbergs, E., Serga, V., Platacis, E., Maiorov, M., and Shishkin, A., Cadmium recovery from spent Ni–Cd batteries: A brief review, Metals, 2021, vol. 11, no. 11, p. 1714.

    Article  Google Scholar 

  5. Fetcenko, M.A., et al., Recent advances in NiMH battery technology, J. Power Sources, 2007, vol. 165, no. 2, pp. 544–551.

    Article  Google Scholar 

  6. Tian, Y., et al., Promises and challenges of next-generation “beyond li-ion” batteries for electric vehicles and grid decarbonization, Chem. Rev., 2021, vol. 121, no. 3, pp. 1623–1669.

    Article  Google Scholar 

  7. Liu, Q., et al., Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping, Nature Energy, 2018, vol. 3, pp. 936–943.

    Article  Google Scholar 

  8. Wu, F., Maier, J., and Yu, Y., Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries, Chem. Soc. Rev., 2020, vol. 49, no. 5, pp. 1569–1614.

    Article  Google Scholar 

  9. Bakierska, M., et al., Enhancement of electrochemical performance of LiMn2O4 spinel cathode material by synergetic substitution with Ni and S, Materials, 2016, vol. 9.

  10. Deng, S., Wang, H., Liu, H., Liu, J., and Yan, H., Research progress in improving the rate performance of LiFePO4 cathode materials, Nano-Micro Lett., 2014, vol. 6, pp. 209–226.

    Article  Google Scholar 

  11. Cheng, H., Shapter, J.G., Li, Y., and Gao, G., Recent progress of advanced anode materials of lithium-ion batteries, J. Energy Chem., 2021, vol. 57, pp. 451–468.

    Article  Google Scholar 

  12. Zhang, H., Yang, Y., Ren, D., Wang, L., and He, X., Graphite as anode materials: Fundamental mechanism, recent progress and advances, Energy Storage Mater., 2021, vol. 36, pp. 147–170.

    Article  Google Scholar 

  13. Zhang, F. and Yang, J., Boosting initial Coulombic efficiency of Si-based anodes: a review, Emergent Mater., 2020, vol. 3, pp. 369–380.

    Article  Google Scholar 

  14. Zuo, X., Zhu, J., Müller-Buschbaum, P., and Cheng, Y., Silicon based lithium-ion battery anodes: A chronicle perspective review, Nano Energy, 2017, vol. 31, pp. 113–143.

    Article  Google Scholar 

  15. Wang, Q., Jiang, L., Yu, Y., and Sun, J.-H., Progress of enhancing the safety of lithium ion battery from the electrolyte aspect, Nano Energy, 2019, vol. 55, pp. 93–114.

    Article  Google Scholar 

  16. Liu, X., et al., Thermal runaway of lithium-ion batteries without internal short circuit, Joule, 2018, vol. 2, no. 10, pp. 2047–2064.

    Article  Google Scholar 

  17. Duh, Y.-S., et al., Characterization on thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicles: A review, J. Energy Storage, 2021, vol. 41, p. 102888.

    Article  Google Scholar 

  18. Wang, Q., Mao, B., Stoliarov, S.I., and Sun, J., A review of lithium ion battery failure mechanisms and fire prevention strategies, Prog. Energy Combust. Sci., 2019, vol. 73, pp. 95–131.

    Article  Google Scholar 

  19. Duan, J., et al., Building safe lithium-ion batteries for electric vehicles: A review, Electrochem. Energy Rev., 2019, vol. 3, pp. 1–42.

    Article  Google Scholar 

  20. Ashurov, K.B., et al., Solving the problem of energy storage for solar photovoltaic plants (review), Appl. Sol. Energy, 2019, vol. 55, pp. 119–125.

    Article  Google Scholar 

  21. Li, L., et al., A stable vanadium redox flow battery with high energy density for large scale energy storage, Adv. Energy Mater., 2011, vol. 1, pp. 394–400.

    Article  Google Scholar 

  22. Hwang, J.Y., Myung, S.T., and Sun, Y.-K., Sodium-ion batteries: present and future, Chem. Soc. Rev., 2017, vol. 46, no. 12, pp. 3529–3614.

    Article  Google Scholar 

  23. Fang, Y., Xiao, L., Chen, Z., Ai, X., Cao, Y., and Yang, H., Recent advances in sodium-ion battery materials, Electrochem. Energy Rev., vol. 1, pp. 294–323.

  24. Yang, R., et al., Development and challenges of electrode materials for rechargeable Mg batteries, Energy Storage Mater., 2021, vol. 42, pp. 687–704.

    Article  Google Scholar 

  25. Pei, C., et al., Recent progress and challenges in the optimization of electrode materials for rechargeable magnesium batteries, Small, 2020, p. e2004108.

  26. Dominko, R., Bitenc, J., Berthelot, R., Gauthier, M., Pagot, G., and Di Noto, V., Magnesium batteries: Current picture and missing pieces of the puzzle, J. Power Sources, 2020, vol. 478, p. 229027.

    Article  Google Scholar 

  27. Zhang, Y.-F., Geng, H., Wei, W., Ma, J., Chen, L., and Li, C.C., Challenges and recent progress in the design of advanced electrode materials for rechargeable Mg batteries, Energy Storage Mater., 2019, vol. 20, pp. 118–138.

    Article  Google Scholar 

  28. Min, X., et al., Potassium-ion batteries: outlook on present and future technologies, Energy Environ. Sci., 2021, vol. 14, pp. 2186–2243.

    Article  Google Scholar 

  29. Rajagopalan, R., Tang, Y., Ji, X., Jia, C., and Wang, H., Advancements and challenges in potassium ion batteries: A comprehensive review, Adv. Funct. Mater., 2020, vol. 30, p. 1909486.

    Article  Google Scholar 

  30. Liu, S., Kang, L., and Jun, S.C., Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries, Adv. Mater., 2021, p. e2004689.

  31. Gummow, R.J., Vamvounis, G., Kannan, M.B., and He, Y., Calcium-ion batteries: Current state-of-the-art and future perspectives, Adv. Mater., 2018, vol. 30, no. 39, p. e1801702.

    Article  Google Scholar 

  32. Ambroz, F., Macdonald, T.J., and Nann, T., Trends in aluminium-based intercalation batteries, Adv. Energy Mater., 2017, vol. 7, p. 1602093.

    Article  Google Scholar 

  33. Xu, X., et al., Engineering strategies for low-cost and high-power density aluminum-ion batteries, Chem. Eng. J., 2021, vol. 418, p. 129385.

    Article  Google Scholar 

  34. Wu, F., Yang, H., Bai, Y., and Wu, C., Paving the path toward reliable cathode materials for aluminum-ion batteries, Adv. Mater., 2019, vol. 31, no. 16, p. e1806510.

    Article  Google Scholar 

  35. Zhang, K., et al., Recent advances in rechargeable aluminum-ion batteries and considerations for their future progress, ACS Appl. Energy Mater., 2020, vol. 3, no. 7, pp. 6019–6035.

    Article  Google Scholar 

  36. Wu, Y., et al., 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery, Adv. Mater., 2016, vol. 28, no. 41, pp. 9218–9222.

    Article  Google Scholar 

  37. Song, W.-L., Li, S., Zhang, G., Tu, J., Chen, H., and Jiao, S., Cellulose-derived flake graphite as positive electrodes for Al-ion batteries, Sustainable Energy Fuels, 2019, vol. 3, pp. 3561–3568.

    Article  Google Scholar 

  38. Kim, J., Raj, M.R., and Lee, G., High-defect-density graphite for superior-performance aluminum-ion batteries with ultra-fast charging and stable long life, Nano-Micro Lett., 2021, vol. 13, p. 171.

    Article  Google Scholar 

  39. Dong, X., et al., Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery, Carbon, 2019, vol. 148, pp. 134–140.

    Article  Google Scholar 

  40. Wang, D.-Y. et al., Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode, Nat. Commun., 2017, vol. 8, p. 14283.

    Article  Google Scholar 

  41. Hu, H. et al., Small graphite nanoflakes as an advanced cathode material for aluminum ion batteries, Chem. Commun., 2020, vol. 56, pp. 1593–1596.

    Article  Google Scholar 

  42. Greco, G. et al., Influence of the electrode nano/microstructure on the electrochemical properties of graphite in aluminum batteries, J. Mater. Chem. A, 2018, vol. 6, pp. 22673–22680.

    Article  Google Scholar 

  43. Xu, J.H., Turney, D.E., Jadhav, A.L., and Messinger, R.J., Effects of graphite structure and ion transport on the electrochemical properties of rechargeable aluminum−graphite batteries, ACS Appl. Energy Mater., 2019, vol. 2, no. 11, pp. 7799–7810.

    Article  Google Scholar 

  44. Elia, G.A., Kyeremateng, N.A., Marquardt, K., and Hahn, R., An aluminum/graphite battery with ultra-high rate capability, Batteries Supercaps, 2019, vol. 2, no. 1, pp. 83–90.

    Google Scholar 

  45. Das, S.K., Graphene: A cathode material of choice for aluminum-ion batteries, Angewandte Chemie, 2018, vol. 57, no. 51, pp. 16606–16617.

    Article  Google Scholar 

  46. Chen, H., et al., Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life, Sci. Adv., 2017, vol. 3, no. 12.

  47. Zhang, Q., et al., Low-temperature synthesis of edge-rich graphene paper for high-performance aluminum batteries, Energy Storage Mater., 2018, vol. 15, pp. 361–367.

    Article  Google Scholar 

  48. Chen, H., et al., A defect-free principle for advanced graphene cathode of aluminum-ion battery, Adv. Mater., 2017, vol. 29, no. 12, p. 1605958.

    Article  Google Scholar 

  49. Huang, X., Liu, Y., Zhang, H., Zhang, J., Noonan, O., and Yu, C., Free-standing monolithic nanoporous graphene foam as a high performance aluminum-ion battery cathode, J. Mater. Chem., 2017, vol. 5, pp. 19416–19421.

    Article  Google Scholar 

  50. Huang, H., et al., Design and construction of few-layer graphene cathode for ultrafast and high-capacity aluminum-ion batteries, Energy Storage Mater., 2020, vol. 27, pp. 396–404.

    Article  Google Scholar 

  51. Kong, Y., et al., Thermal reductive perforation of graphene cathode for high-performance aluminum-ion batteries, Adv. Funct. Mater., 2021, vol. 31, no. 17, p. 2010569.

    Article  Google Scholar 

  52. Zhang, L., Chen, L., Luo, H., Zhou, X., and Liu, Z., Large-sized few-layer graphene enables an ultrafast and long-life aluminum-ion battery, Adv. Energy Mater., 2017, vol. 7, p. 1700034.

    Article  Google Scholar 

  53. Qiao, J., et al., Dense integration of graphene paper positive electrode materials for aluminum-ion battery, Ionics, 2019, vol. 26, pp. 245–254.

    Article  Google Scholar 

  54. Divya, S. and Nann, T., High-voltage carbon-based cathodes for non-aqueous aluminium-ion batteries, ChemElectroChem, 2021, vol. 8, no. 3, pp. 492–499.

    Article  Google Scholar 

  55. Liu, Z., Wang, J., Ding, H., Chen, S., Yu, X., and Lu, B., Carbon nanoscrolls for aluminum battery, ACS Nano, 2018, vol. 12, no. 8, pp. 8456–8466.

    Article  Google Scholar 

  56. Stadie, N.P., Wang, S., Kravchyk, K.V., and Kovalenko, M.V., Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries, ACS Nano, 2017, vol. 11, no. 2, pp. 1911–1919.

    Article  Google Scholar 

  57. Wang, H., et al., Binder-free V2O5 cathode for greener rechargeable aluminum battery, ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 1, pp. 80–84.

    Article  Google Scholar 

  58. Diem, A.M., Fenk, B., Bill, J., and Burghard, Z., Binder-free V2O5 cathode for high energy density rechargeable aluminum-ion batteries, Nanomaterials, 2020, vol. 10, p. 247.

    Article  Google Scholar 

  59. Zhang, X., Zhang, G., Wang, S., Li, S., and Jiao, S., Porous CuO microsphere architectures as high-performance cathode materials for aluminum-ion batteries, J. Mater. Chem., 2018, vol. 6, pp. 3084–3090.

    Article  Google Scholar 

  60. Tu, J., Wang, M., Luo, Y.-W., and Jiao, S., Coral-Like TeO2 microwires for rechargeable aluminum batteries, ACS Sustainable Chem. Eng., 2020, vol. 8, pp. 2416–2422.

    Article  Google Scholar 

  61. Lahan, H. and Das, S.K., Al3+ ion intercalation in MoO3 for aqueous aluminum-ion battery, J. Power Sources, 2019, vol. 413, pp. 134–138.

    Article  Google Scholar 

  62. Liu, J., Li, Z., Huo, X., and Li, J., Nanosphere-rod-like Co3O4 as high performance cathode material for aluminium ion batteries, J. Power Sources, 2019, vol. 422, pp. 49–56.

    Article  Google Scholar 

  63. Yu, Z., Kang, Z., Hu, Z., Lu, J.-H., Zhou, Z., and Jiao, S., Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries, Chem. Commun., 2016, vol. 52, no. 68, pp. 10427–10430.

    Article  Google Scholar 

  64. Geng, L., Scheifers, J.P., Fu, C., Zhang, J., Fokwa, B.P.T., and Guo, J., Titanium sulfides as intercalation-type cathode materials for rechargeable aluminum batteries, ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 25, pp. 21251–21257.

    Article  Google Scholar 

  65. Lin, Z., et al., Amorphous anion-rich titanium polysulfides for aluminum-ion batteries, Sci. Adv., 2021, vol. 7.

  66. Z. Li, B. Niu, J. Liu, J. Li, and F. Kang, Rechargeable aluminum-ion battery based on MoS2 microsphere cathode, ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 11, pp. 9451–9459.

    Article  Google Scholar 

  67. Hu, Z., et al., Two-dimensionally porous cobalt sulfide nanosheets as a high-performance cathode for aluminum-ion batteries, J. Power Sources, 2019, vol. 440, p. 227147.

    Article  Google Scholar 

  68. Lu, H., et al., A high performance SnO2/C nanocomposite cathode for aluminum-ion batteries, J. Mater. Chem., 2019, vol. 7, pp. 7213–7220.

    Article  Google Scholar 

  69. Xing, W., et al., Carbon-encapsulated CoSe nanoparticles derived from metal-organic frameworks as advanced cathode material for Al-ion battery, J. Power Sources, 2018, vol. 401, pp. 6–12.

    Article  Google Scholar 

  70. Cai, T., et al., Stable CoSe2/carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries, Energy Environ. Sci., 2018, vol. 11, pp. 2341–2347.

    Article  Google Scholar 

  71. Hu, Y., et al., A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries, Adv. Mater., 2018, vol. 30, no. 2, p. 1703824.

    Article  Google Scholar 

  72. Zhuang, R., Huang, Z., Wang, S., Qiao, J., Wu, J., and Yang, J., Binder-free cobalt sulfide@carbon nanofibers composite films as cathode for rechargeable aluminum-ion batteries, Chem. Eng. J., 2021, vol. 409, p. 128235.

    Article  Google Scholar 

  73. Yang, W., Lu, H., Cao, Y., Xu, B., Deng, Y., and Cai, W., Flexible free-standing MoS2/carbon nanofibers composite cathode for rechargeable aluminum-ion batteries, ACS Sustainable Chem. Eng., 2019, vol. 7, no. 5, 4861–4867.

    Article  Google Scholar 

  74. Hu, Y., et al., All-climate aluminum-ion batteries based on binder-free MOF-derived FeS2@C/CNT cathode, Nano-Micro Lett., 2021, vol. 13, p. 159.

    Article  Google Scholar 

  75. Vijaya Kumar Saroja, A.P., Kamaraj, M., and Ramaprabhu, S., Strongly coupled sulfur nanoparticles on graphene-carbon nanotube hybrid electrode for multifunctional sodium and aluminium ion storage, J. Alloys Compd., 2020, vol. 818, p. 152864.

    Article  Google Scholar 

  76. Wang, S., et al., A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/Ni3S2@graphene, Adv. Energy Mater., 2016, vol. 6, no. 13, p. 1600137.

    Article  Google Scholar 

  77. Uemura, Y., Chen, C.-Y., Hashimoto, Y., Tsuda, T., Matsumoto, H., and Kuwabata, S., Graphene nanoplatelet composite cathode for a chloroaluminate ionic liquid-based aluminum secondary battery, ACS Appl. Energy Mater., 2018, vol. 1, no. 5, pp. 2269–2274.

    Article  Google Scholar 

  78. Tu, J., Wang, M., Xiao, X., Lei, H., and Jiao, S., Nickel phosphide nanosheets supported on reduced graphene oxide for enhanced aluminum-ion batteries, ACS Sustainable Chem. Eng., 2019, vol. 7, no. 6, pp. 6004–6012.

    Article  Google Scholar 

  79. Hu, Y., Luo, B., Ye, D., Zhu, X.-B., Lyu, M., and Wang, L., An innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries, Adv. Mater., 2017, vol. 29, no. 48, p. 1606132.

    Article  Google Scholar 

  80. Wei, J., Chen, W., Chen, D., and Yang, K., An amorphous carbon-graphite composite cathode for long cycle life rechargeable aluminum ion batteries, J. Mater. Sci. Technol., 2018, vol. 34, no. 6, pp. 983–989.

    Article  Google Scholar 

  81. Han, M., et al., Graphitic multi-walled carbon nanotube cathodes for rechargeable Al-ion batteries with well-defined discharge plateaus, J. Power Sources, 2020, vol. 451, p. 227769.

    Article  Google Scholar 

  82. Liu, C., et al., Binder-free ultrasonicated graphite flakes@carbon fiber cloth cathode for rechargeable aluminum-ion battery, J. Power Sources, 2019, vol. 438, p. 226950.

    Article  Google Scholar 

  83. Xing, W., et al., Layered double hydroxides derived NiCo-sulfide as a cathode material for aluminum ion batteries, Electrochim. Acta, 2020, vol. 344, p. 136174.

    Article  Google Scholar 

  84. Lu, S., et al., Self-supporting and high-loading hierarchically porous Co-P cathode for advanced Al-ion battery, Chem. Eng. J., 2020, vol. 389., p. 124370.

    Article  Google Scholar 

  85. Wei, J., Chen, W., Chen, D., and Yang, K., Molybdenum oxide as cathode for high voltage rechargeable aluminum ion battery, J. Electrochem. Soc., 2017, vol. 164, p. A2304.

    Article  Google Scholar 

  86. Kazazi, M., Abdollahi, P., and Mirzaei-Moghadam, M., High surface area TiO2 nanospheres as a high-rate anode material for aqueous aluminium-ion batteries, Solid State Ionics, 2017, vol. 300, pp. 32–37.

    Article  Google Scholar 

  87. Kazazi, M., Zafar, Z.A., Delshad, M.T., Cervenka, J., and Chen, C., TiO2/CNT nanocomposite as an improved anode material for aqueous rechargeable aluminum batteries, Solid State Ionics, 2018, vol. 320, pp. 64–69.

    Article  Google Scholar 

  88. Yolshina, L.A., Shevelin, P.Y., Druzhinin, K., Elterman, V.A., Yolshina, V.A., and Muradymov, R.V., Fast-charged aluminum-ion battery with aluminum-graphene nanocomposite anode, Ionics, 2020, vol. 27, pp. 249–258.

    Article  Google Scholar 

  89. Shen, X., et al., Ultra-fast charging in aluminum-ion batteries: Electric double layers on active anode, Nat. Commun., 2021, vol. 12, p. 820.

    Article  Google Scholar 

  90. Jiao, H., et al., Liquid gallium as long cycle life and recyclable negative electrode for Al-ion batteries, Chem. Eng. J., 2020, vol. 391, p. 123594.

    Article  Google Scholar 

  91. Lee, D., Lee, G., and Tak, Y., Hypostatic instability of aluminum anode in acidic ionic liquid for aluminum-ion battery, Nanotechnology, 2018, vol. 29 36, p. 36LT01.

    Article  Google Scholar 

  92. Jiao, H., et al., Al homogeneous deposition induced by N-containing functional groups for enhanced cycling stability of Al-ion battery negative electrode, Nano Res., 2020, vol. 14, pp. 646–653.

    Article  Google Scholar 

  93. Wang, C., Li, J., Jiao, H., Tu, J., and Jiao, S., The electrochemical behavior of an aluminum alloy anode for rechargeable Al-ion batteries using an AlCl3 urea liquid electrolyte, RSC Adv., 2017, vol. 7, pp. 32288–32293.

    Article  Google Scholar 

  94. Ru, Y., Zheng, S., Xue, H., and Pang, H., Different positive electrode materials in organic and aqueous systems for aluminium ion batteries, J. Mater. Chem. A, 2019, vol. 7, pp. 14391–14418.

    Article  Google Scholar 

  95. Yuan, D., Zhao, J., Manalastas, W., Kumar, S., and Srinivasan, M., Emerging rechargeable aqueous aluminum ion battery: Status, challenges, and outlooks, Nano Mater. Sci., 2020, vol. 2, no. 3, pp. 248–263.

    Article  Google Scholar 

  96. Yang, D., et al., Pathways towards high energy aqueous rechargeable batteries, Coord. Chem. Rev., 2020, vol. 424, p. 213521.

    Article  Google Scholar 

  97. Holland, A., McKerracher, R.D., Cruden, A.J., and Wills, R.G.A., An aluminium battery operating with an aqueous electrolyte, J. Appl. Electrochem., 2018, vol. 48, pp. 243–250.

    Article  Google Scholar 

  98. Nandi, S., Lahan, H., and Das, S.K., A proof of concept for low-cost rechargeable aqueous aluminium-ion batteries, Bull. Mater. Sci., 2019, vol. 43, p. 26.

    Article  Google Scholar 

  99. Yan, C., et al., Architecting a stable high-energy aqueous al-ion battery, J. Am. Chem. Soc., 2020, vol. 142, no. 36, pp. 15295–15304.

    Article  Google Scholar 

  100. Joseph, J., Nerkar, J.Y., Tang, C., Du, A., O’Mullane, A.P., and Ostrikov, K.K., Reversible intercalation of multivalent Al3+ ions into potassium-rich cryptomelane nanowires for aqueous rechargeable Al-ion batteries, ChemSusChem, 2019, vol. 12, no. 16, pp. 3753–3760.

    Article  Google Scholar 

  101. He, S., et al., A high-energy aqueous aluminum-manganese battery, Adv. Funct. Mater., 2019, vol. 29, no. 45, p. 1905228.

    Article  Google Scholar 

  102. Wu, C., et al., Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery, Nat. Commun., 2019, vol. 10, p. 73.

    Article  Google Scholar 

  103. Wang, P., et al., A flexible aqueous Al ion rechargeable full battery, Chem. Eng. J., 2019, vol. 373, pp. 580–586.

    Article  Google Scholar 

  104. Wang, P., et al., A high-performance flexible aqueous Al ion rechargeable battery with long cycle life, Energy Storage Mater., 2020, vol. 25, pp. 426–435.

    Article  Google Scholar 

  105. Cai, Y., et al., Bronze-type vanadium dioxide holey nanobelts as high performing cathode material for aqueous aluminium-ion batteries, J. Mater. Chem., 2020, vol. 8, pp. 12716–12722.

    Article  Google Scholar 

  106. Lahan, H. and Das, S.K., Active role of inactive current collector in aqueous aluminum-ion battery, Ionics, 2018, vol. 24, pp. 2175–2180.

    Article  Google Scholar 

  107. Zhu, N., Zhang, K., Wu, F., Bai, Y., and Wu, C., Ionic liquid-based electrolytes for aluminum/magnesium/sodium-ion batteries, Energy Mater. Adv., 2021, vol. 2021, p. 9204217.

    Article  Google Scholar 

  108. Zhang, Y., Liu, S., Ji, Y., Ma, J., and Yu, H., Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives, Adv. Mater., 2018, vol. 30, no. 38, p. e1706310.

    Article  Google Scholar 

  109. Craig, B., Schoetz, T., Cruden, A.J., and Ponce de León, C., Review of current progress in non-aqueous aluminium batteries, Renewable Sustainable Energy Rev., 2020, vol. 133, p. 110100.

    Article  Google Scholar 

  110. Schoetz, T., Craig, B., Ponce de León, C., Bund, A., Ueda, M., and Low, C.T.J., Aluminium-poly(3,4-ethylenedioxythiophene) rechargeable battery with ionic liquid electrolyte, J. Energy Storage, 2020, vol. 28, p. 101176.

    Article  Google Scholar 

  111. Das, S.K., Palaniselvam, T., and Adelhelm, P., Electrochemical study on the rechargeability of TiO2 as electrode material for Al-ion batteries with chloroaluminate ionic liquid electrolyte, Solid State Ionics, 2019, vol. 340, p. 115017.

    Article  Google Scholar 

  112. Choi, S., Go, H.-Y., Lee, G., and Tak, Y., Electrochemical properties of an aluminum anode in an ionic liquid electrolyte for rechargeable aluminum-ion batteries, Physical Chem. Chem. Phys.: PCCP, 2017, vol. 19, no. 13, pp. 8653–8656.

    Article  Google Scholar 

  113. Ferrara, C., Dall Asta, V., Berbenni, V., Quartarone, E., and Mustarelli, P., Physicochemical characterization of AlCl3 1-ethyl-3-methylimidazolium chloride ionic liquid electrolytes for aluminum rechargeable batteries, J. Phys. Chem. C, 2017, vol. 121, pp. 26607–26614.

    Article  Google Scholar 

  114. Canever, N., Hughson, F.R., and Nann, T., Solid-electrolyte interphases (SEI) in nonaqueous aluminum-ion batteries, ACS Appl. Energy Mater., 2020, vol. 3, no. 4, pp. 3673–3683.

    Article  Google Scholar 

  115. Nacimiento, F., Cabello, M., Alcántara, R., Pérez-Vicente, C., Lavela, P., and Tirado, J.L., Exploring an aluminum ion battery based on molybdite as working electrode and ionic liquid as electrolyte, J. Electrochem. Soc., 2018, vol. 165, no. 13, p. A2994.

    Article  Google Scholar 

  116. Wu, F., Zhu, N., Bai, Y., Gao, Y., and Wu, C., An interface-reconstruction effect for rechargeable aluminum battery in ionic liquid electrolyte to enhance cycling performances, Green Energy Environ., 2017, vol. 3, pp. 71–77.

    Article  Google Scholar 

  117. Wang, H., Gu, S., Bai, Y., Chen, S., Wu, F., and Wu, C., High-voltage and noncorrosive ionic liquid electrolyte used in rechargeable aluminum battery, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 41, pp. 27444–27448.

    Article  Google Scholar 

  118. Zhu, G., et al., Rechargeable aluminum batteries: effects of cations in ionic liquid electrolytes, RSC Adv., 2019, vol. 9, pp. 11322–11330.

    Article  Google Scholar 

  119. Li, C.-W., Patra, J., Li, J., Rath, P.C., Lin, M.-H., and Chang, J.K., A novel moisture-insensitive and low-corrosivity ionic liquid electrolyte for rechargeable aluminum batteries, Adv. Funct. Mater., 2020, vol. 30, p. 1909565.

    Article  Google Scholar 

  120. Ng, K.L., Dong, T., Anawati, J., and Azimi, G., High-performance aluminum ion battery using cost-effective AlCl3-trimethylamine hydrochloride ionic liquid electrolyte, Adv. Sustainable Syst., 2020, vol. 4, no. 8, p. 2000074.

    Article  Google Scholar 

  121. Zhang, L., Ma, Q., Wang, G., and Liu, Z., A low cost electrolyte of AlCl3/AcAm ionic liquid analogs for high-performance aluminum ion batteries, J. Electroanal. Chem., 2021, vol. 888, p. 115176.

    Article  Google Scholar 

  122. Tu, J., Wang, S., Li, S., Wang, C., Sun, D.-B., and Jiao, S., The effects of anions behaviors on electrochemical properties of Al/graphite rechargeable aluminum-ion battery via molten AlCl3-NaCl liquid electrolyte, J. Electrochem. Soc., 2017, vol. 164, no. 13, p. A3292.

    Article  Google Scholar 

  123. Gan, F., Chen, K., Li, N., Wang, Y., Shuai, Y., and He, X., Low cost ionic liquid electrolytes for rechargeable aluminum/graphite batteries, Ionics, 2019, vol. 25, pp. 4243–4249.

    Article  Google Scholar 

  124. Angell, M., et al., High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte, Proc. Natl. Acad. Sci., 2017, vol. 114, pp. 834–839.

    Article  Google Scholar 

  125. Jiao, H., Wang, C., Tu, J., Tian, D., and Jiao, S., A rechargeable Al-ion battery: Al/molten AlCl3-urea/graphite, Chem. Commun., 2017, vol. 53, no. 15, pp. 2331–2334.

    Article  Google Scholar 

  126. Pang, Y., Pan, J., Yang, J., Zheng, S., and Wang, C., Electrolyte/electrode interfaces in all-solid-state lithium batteries: A review, Electrochem. Energy Rev., 2021,  vol. 4, pp. 169–193.

    Article  Google Scholar 

  127. Xia, S., Wu, X., Zhang, Z., Cui, Y., and Liu, W., Practical challenges and future perspectives of all-solid-state lithium-metal batteries, Chem, 2019, vol. 5, no. 4, pp. 753–785.

    Article  Google Scholar 

  128. Zhao, W., Yi, J., He, P., and Zhou, H., Solid-state electrolytes for lithium-ion batteries: fundamentals, challenges and perspectives, Electrochem. Energy Rev., 2019, vol. 2, pp. 574–605.

    Article  Google Scholar 

  129. Chen, R., Li, Q., Yu, X., Chen, L., and Li, H., Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces, Chem. Rev., 2020, vol. 120, no. 14, pp. 6820–6877.

    Article  Google Scholar 

  130. Wang, L., et al., Fundamentals of electrolytes for solid-state batteries: Challenges and perspectives, Front. Mater., 2020, vol. 7, p. 111.

    Article  Google Scholar 

  131. Li, C., et al., An advance review of solid-state battery: Challenges, progress and prospects, Sustainable Mater. Technol., 2021, vol. 29, p. e00297.

    Article  Google Scholar 

  132. Gao, Z., et al., Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries, Adv. Mater., 2018, vol. 30, no. 17, p. 1705702.

    Article  Google Scholar 

  133. Sun, C., Liu, J., Gong, Y., Wilkinson, D.P., and Zhang, J., Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 2017, vol. 33, pp. 363–386.

    Article  Google Scholar 

  134. Wu, J.F., et al., Inorganic solid electrolytes for all-solid-state sodium batteries: Fundamentals and strategies for battery optimization, Adv. Funct. Mater., 2020, vol. 31, no. 13, p. 2008165.

    Article  Google Scholar 

  135. Zhan, Y., Zhang, W., Lei, B., Liu, H., and Li, W., Recent development of Mg ion solid electrolyte, Front. Chem., 2020, vol. 8.

  136. Jaschin, P.W., Gao, Y., Li, Y., and Bo, S.H., A materials perspective on magnesium-ion-based solid-state electrolytes, J. Mater. Chem., 2020, vol. 8, pp. 2875–2897.

    Article  Google Scholar 

  137. Yu, Z., et al., Flexible stable solid-state Al-Ion batteries, Adv. Funct. Mater., 2019, vol. 29, no. 1, p. 1806799.

    Article  Google Scholar 

  138. Kim, I., Jang, S., Lee, K.H., Tak, Y., and Lee, G., In situ polymerized solid electrolytes for superior safety and stability of flexible solid-state Al-ion batteries, Energy Storage Mater., vol. 40, pp. 229–238.

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support from the Uzbekistan Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ashurov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashurov, I., Iskandarov, S., Khalilov, U. et al. Current Challenges, Progress and Future Perspectives of Aluminum-Ion Batteries. Appl. Sol. Energy 58, 334–354 (2022). https://doi.org/10.3103/S0003701X22030033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X22030033

Keywords:

Navigation