Skip to main content

Advertisement

Log in

Fast-charged aluminum-ion battery with aluminum-graphene nanocomposite anode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Currently, aluminum-ion batteries are considered attractive energy storage devices because aluminum is an inexpensive, widely available, environmentally friendly, low-flammable, and high recyclable electrode material. Electrochemical cell simulating the work of an aluminum-ion battery with aluminum-graphene nanocomposite–negative electrode, positive graphene electrode, and chloroaluminate ionic liquid 1-ethyl-3-methylimidazolium chloride has been designed and tested. The cell exhibits excellent performance and long shelf life. The aluminum-graphene composite is not prone to oxidation over a long period of time. Consequently, the negative electrode surface does not undergo passivation by trace amounts of water and oxygen in the electrolyte during storage, which considerably prolongs the battery shelf life. The analyzed cell delivered stable performance across a wide range of charge/discharge rates for several thousands of cycles without any noticeable loss in capacity and Coulombic efficiency. It has almost 100% Coulombic efficiency at high charge/discharge current densities and retains its characteristics after a 7-day current-free period.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beaudin M, Zareipour H, Schellenberglabe A, Rosehart W (2010) Energy storage for mitigating the variability of renewable electricity sources: an updated review. Energy Sustain Dev 14:302–314. https://doi.org/10.1016/j.esd.2010.09.007

    Article  Google Scholar 

  2. Green car congress (Accessed 5 Marth 2020). https://www.greencarcongress.com/2009/12/panasonic-20091225.html

  3. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935. https://doi.org/10.1126/science.1212741

    Article  CAS  PubMed  Google Scholar 

  4. Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park SA (2015) Review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322. https://doi.org/10.1016/j.jpowsour.2015.02.054

    Article  CAS  Google Scholar 

  5. Mokhtar M, Talib MZM, Majlan EH, Tasirin SM, Ramli WMFW, Daud WRW, Sahari J (2015) Recent developments in materials for aluminum–air batteries: a review. Ind Eng Chem Res 32:1–20. https://doi.org/10.1016/j.jiec.2015.08.004

    Article  CAS  Google Scholar 

  6. Jayaprakash N, Das SK, Archer LA (2011) The rechargeable aluminum-ion battery. Chem Commun 47:12610–12612. https://doi.org/10.1039/c1cc15779e

    Article  CAS  Google Scholar 

  7. Chiku M, Takeda H, Yamaguchi Y, Higuchi E, Inoue H (2013) Study on the electrolyte containing AlBr3 and KBr for rechargeable aluminum batteries. Int J Chem 5:1–8. https://doi.org/10.5539/ijc.v5n4p1

    Article  CAS  Google Scholar 

  8. Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114:11683–11720. https://doi.org/10.1021/cr500049y

    Article  CAS  PubMed  Google Scholar 

  9. Lin M-C, Gong M, Lu B, Wu Y, Wang D-Y, Guan M, Angell M, Chen C, Yang J, Hwang B-J, Dai H (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520:324–328. https://doi.org/10.1038/nature14340

    Article  CAS  Google Scholar 

  10. Yolshina LA, Muradymov RV, Vichuzhanin DI, Smirnova EO (2016) Enhancement of the mechanical properties of aluminum-graphene composites. AIP Conf Proc 1785:040093. https://doi.org/10.1063/1.4967150

    Article  CAS  Google Scholar 

  11. Zafar ZA, Imtiaz S, Razaq R, Ji S, Huang T, Zhang Z, Huang Y, Anderson JA (2017) Cathode materials for rechargeable aluminum batteries: current status and progress. J Mater Chem A 5:5646–5660. https://doi.org/10.1039/C7TA00282C

    Article  CAS  Google Scholar 

  12. Wedepohl HK (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2

    Article  CAS  Google Scholar 

  13. Li Z, Huang Y, Yuan L, Hao Z, Huang Y (2015) Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon 92:41–63. https://doi.org/10.1016/j.carbon.2015.03.008

    Article  CAS  Google Scholar 

  14. Wang D-W, Zeng Q, Zhou G, Yin L, Li F, Cheng H-M, Gentle IR, Lu GQM (2013) Carbon-sulfur composites for Li-S batteries: status and prospects. J Mater Chem A 1(33):9382. https://doi.org/10.1039/c3ta11045a

    Article  CAS  Google Scholar 

  15. Ambrosi A, Chua CK, Latiff NM, Loo AH, Wong CHA, Eng AYS, Bonanni A, Pumera M (2016) Graphene and its electrochemistry - an update. Chem Soc Rev 45(9):2458–2493. https://doi.org/10.1039/C6CS00136J

    Article  PubMed  Google Scholar 

  16. Xu Y, Lin Z, Zhong X, Huang X, Weiss NO, Huang Y, Duan X (2014) Holey graphene frameworks for highly efficient capacitive energy storage. Nat Commun 5(1):4554. https://doi.org/10.1038/ncomms5554

    Article  CAS  PubMed  Google Scholar 

  17. Ma H, Ma M, Zeng J, Guo X, Ma Y (2016) Hydrothermal synthesis of graphene nanosheets and its application in electrically conductive adhesives. Mater Lett 178:181–184. https://doi.org/10.1016/j.matlet.2016.05.008

    Article  CAS  Google Scholar 

  18. Wu Y, Gong M, Lin M-C, Yuan C, Angell M, Huang L, Wang D-Y, Zhang X, Yang J, Hwang B-J, Dai H (2016) 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery. Adv Mater 28(41):9218–9222. https://doi.org/10.1002/adma.201602958

    Article  CAS  PubMed  Google Scholar 

  19. Pradhan D, Reddy RG (2014) Mechanistic study of Al electrodeposition from EMIC-AlCl3 and BMIC-AlCl3 electrolytes at low temperature. Mater Chem Phys 143(2):564–569. https://doi.org/10.1016/j.matchemphys.2013.09.033

    Article  CAS  Google Scholar 

  20. Hess IJ, Bet JF (1971) Description of Al deposition plant based on AlCl3 and LiH soln. in ethyl ether. Met Fin 3:38–34

    Google Scholar 

  21. Hurley FH, WIer TP (1951) The electrodeposition of aluminum from nonaqueous solutions at room temperature. J Electrochem Soc 98(5):207–212. https://doi.org/10.1149/1.2778133

    Article  CAS  Google Scholar 

  22. Simanavičius L, Šarkis A (2000) Codeposition of aluminum with some metals from AlBr3-dimethylethylphenylammonium bromide solutions containing acetylacetonate of selected metal. Electrochim Acta 46(4):499–507. https://doi.org/10.1016/S0013-4686(00)00537-5

    Article  Google Scholar 

  23. Legrand L, Tranchant A, Messina R (1994) Behaviour of aluminium as anode in dimethylsulfone-based electrolytes. Electrochim Acta 39(10):1427–1431. https://doi.org/10.1016/0013-4686(94)85054-2

    Article  CAS  Google Scholar 

  24. Legrand L (1994) Electrodeposition studies of aluminum on tungsten electrode from DMSO[Sub 2] electrolytes. J Electrochem Soc 141(2):378–382. https://doi.org/10.1149/1.2054735

    Article  CAS  Google Scholar 

  25. Wang H, Bai Y, Chen S, Luo X, Wu C, Wu F, Lu J, Amine K (2015) Binder-free V 2 O 5 cathode for greener rechargeable aluminum battery. ACS Appl Mater Interfaces 7(1):80–84. https://doi.org/10.1021/am508001h

    Article  CAS  PubMed  Google Scholar 

  26. Mori T, Orikasa Y, Nakanishi K, Kezheng C, Hattori M, Ohta T, Uchimoto Y (2016) Discharge/charge reaction mechanisms of FeS2 cathode material for aluminum rechargeable batteries at 55°C. J Power Sources 313:9–14. https://doi.org/10.1016/j.jpowsour.2016.02.062

    Article  CAS  Google Scholar 

  27. Noda K, Endo E, Takahashi K (1996) Aluminium non-aqueous electrolyte secondary cell. US5554458A

  28. Elterman VA, Shevelin PY, Chizhov DL, Yolshina LA, Il’ina EA, Borozdin AV, Kodess MI, Ezhikova MA, Rusinov GL (2019) Development of a novel 1-trifluoroacetyl piperidine-based electrolyte for aluminum ion battery. Electrochim Acta 323:134806. https://doi.org/10.1016/j.electacta.2019.134806

    Article  CAS  Google Scholar 

  29. Yolshina LA, Muradymov RV, Korsun IV, Yakovlev GA, Smirnov SV (2016) Novel aluminum-graphene and aluminum-graphite metallic composite materials: synthesis and properties. J Alloys Compd 663:449–459. https://doi.org/10.1016/j.jallcom.2015.12.084

    Article  CAS  Google Scholar 

  30. Yolshina LA, Muradymov RV (2017) Method for synthesis of nanocomposite aluminum-graphene, magnesium-graphene and aluminum-magnesium-graphene materials. Ru2015130107A

  31. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  32. Yolshina LA, Vovkotrub EG, Shatunova AA, Pryakhina VI (2020) Raman spectroscopy study of graphene formed by “in situ” chemical interaction of an organic precursor with a molten aluminium matrix. J Raman Spectrosc 51(2):221–231. https://doi.org/10.1002/jrs.5771

    Article  CAS  Google Scholar 

  33. Xpssimplified (Accessed 20 December 2019). https://xpssimplified.com/

  34. Strohmeier BR (1990) An ESCA method for determining the oxide thickness on aluminum alloys. Surf Interface Anal 15(1):51–56. https://doi.org/10.1002/sia.740150109

    Article  CAS  Google Scholar 

  35. Takahashi S, Curtiss LA, Gosztola D, Koura N, Saboungi M-L (1995) Molecular orbital calculations and Raman measurements for 1-ethyl-3-methylimidazolium chloroaluminates. Inorg Chem 34(11):990–2993. https://doi.org/10.1021/ic00115a029

    Article  Google Scholar 

  36. Xu H, Bai T, Chen H, Guo F, Xi J, Huang T, Cai S, Chu X, Ling J, Gao W (2019) Low-cost AlCl3/Et3NHCl electrolyte for high-performance aluminum-ion battery. Energy Stor Mater 17:38–45. https://doi.org/10.1016/j.ensm.2018.08.003

    Article  Google Scholar 

  37. Childress AS, Parajuli P, Zhu J, Podila R, Rao AM (2017) A Raman spectroscopic study of graphene cathodes in high-performance aluminum ion batteries. Nano Energy 39:69–76. https://doi.org/10.1016/j.nanoen.2017.06.038

    Article  CAS  Google Scholar 

  38. Sun H, Wang W, Yu Z, Yuan Y, Wang S, Jiao S (2015) A new aluminium-ion battery with high voltage, high safety and low cost. Chem Commun 51:11892–11895. https://doi.org/10.1039/C5CC00542F

    Article  CAS  Google Scholar 

  39. Yu Z, Jiao S, Li S, Chen X, Song W-L, Teng T, Tu J, Chen H-S, Zhang G, Fang D-N (2019) Flexible stable solid-state Al-ion batteries. Adv Funct Mater 29:1806199. https://doi.org/10.1002/adfm.201806799

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Pryakhina V.I. for XPS analysis. The research has been carried out with the equipment of the Shared Access Center “Composition of Compounds” of the Institute of High-Temperature Electrochemistry of Ural Branch of RAS and the equipment of the Ural Center for Shared Use “Modern Nanotechnologies” UrFU, Yekaterinburg, Russian Federation.

Funding

The research has been carried out in accordance with the budget plan of The Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences on the topic AAAA-A19-119020190042-7 and partial financial support of JSC “Eurosibenergo” (Russia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Elterman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yolshina, L.A., Shevelin, P.Y., Druzhinin, K.V. et al. Fast-charged aluminum-ion battery with aluminum-graphene nanocomposite anode. Ionics 27, 249–258 (2021). https://doi.org/10.1007/s11581-020-03799-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03799-9

Keywords

Navigation