Skip to main content
Log in

Active role of inactive current collector in aqueous aluminum-ion battery

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The recent revival of research interest in rechargeable aluminum-ion batteries has opened up avenues to overcome its inherent challenges. While there are fierce attempts to find suitable electrode materials for aluminum-ion batteries, it is very important to carefully evaluate them. We show here that an essential criterion for correct electrochemical evaluation of aqueous aluminum-ion batteries is to appropriately select the current collector. Considering anatase TiO2 as a model electrode material, it is demonstrated that type of current collector could transform an inactive electrode material to an active one. TiO2 could exhibit initial Al3+ ion storage capacity of 256 mAhg−1 at a current density of 4 Ag−1 with graphite current collector, whereas it is only 82 mAhg−1 with titanium current collector at similar current density. Interestingly, no charge/discharge characteristics could be obtained with stainless steel and nickel current collectors at any current densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Das SK, Mahapatra S, Lahan H (2017) Aluminum-ion batteries: developments and challenges. J Mater Chem A 5:6347–6367

    Article  CAS  Google Scholar 

  2. Lin MC, Gong M, Lu B, Wu Y, Wang DY, Guan M, Angell M, Chen C, Yang J, Hwang BJ, Dai H (2015) An ultrafast rechargeable aluminum-ion battery. Nature 520:324–328

    Article  CAS  Google Scholar 

  3. Chen H, Xu H, Wang S, Huang T, Xi J, Cai S, Guo F, Xu Z, Gao W, Gao C (2017) Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci Adv 3(1–8):7233

    Article  Google Scholar 

  4. Das SK (2018) Graphene: a cathode material of choice for aluminum-ion battery. Angew Chem Int Ed doi: https://doi.org/10.1002/anie.201802595

  5. Liu S, Pan GL, Li GR, Gao XP (2015) Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries. J Mater Chem A 3:959–962

    Article  CAS  Google Scholar 

  6. González JR, Nacimiento F, Cabello M, Alcántara R, Lavela P, Tirado JL (2016) Reversible intercalation of aluminum into vanadium pentoxide xerogel for aqueous rechargeable batteries. RSC Adv 6:62157–62164

    Article  CAS  Google Scholar 

  7. Liu S, Hu JJ, Yan NF, Pan GL, Li GR, Gao XP (2012) Aluminum storage behavior of Anatase TiO2 nanotube arrays in aqueous solution for aluminum-ion batteries. Energy Environ Science 5:9743–9746

    Article  CAS  Google Scholar 

  8. He YJ, Peng JF, Chu W, Li YZ, Tong DG (2014) Black mesoporous anatase TiO2 nanoleaves: a high capacity and high rate anode for aqueous Al-ion batteries. J Mater Chem A 2:1721–1731

    Article  CAS  Google Scholar 

  9. Kazazi M, Abdollahi P, Mirzaei-Moghadam M (2017) High surface area TiO2 nanospheres as a high-rate anode material for aqueous aluminum-ion batteries. Solid State Ionics 300:32–37

    Article  CAS  Google Scholar 

  10. Sang S, Liu Y, Zhong W, Liu K, Liu H, Wu Q (2016) The electrochemical behavior of TiO2-NTAs electrode in H+ and Al3+ coexistent aqueous solution. Electrochim Acta 187:92–97

    Article  CAS  Google Scholar 

  11. Lahan H, Das SK (2018) An approach to improve the Al3+ ion intercalation in anatase TiO2 nanoparticle for aqueous aluminum-ion battery. Ionics. https://doi.org/10.1007/s11581-018-2530-6

  12. Lahan H, Boruah R, Hazarika A, Das SK (2017) Anatase TiO2 as an anode material for rechargeable aluminum-ion batteries: graphene induced aluminum-ion storage phenomenon. J Phys Chem C 121:26241–26249

    Article  CAS  Google Scholar 

  13. Liu Y, Sang S, Wu Q, Lu Z, Liu K, Liu H (2014) The electrochemical behavior of Cl assisted Al3+ insertion into titanium dioxide nanotube arrays in aqueous solution for aluminum-ion batteries. Electrochim Acta 143:340–346

    Article  CAS  Google Scholar 

  14. Reed LD, Menke E (2013) The roles of V2O5 and stainless steel in rechargeable Al–ion batteries. J Electrochem Soc 160:915–917

    Article  CAS  Google Scholar 

  15. Liu S, Ye SH, Li CZ, Pan GL, Gao XP (2011) Rechargeable aqueous lithium-ion battery of TiO2/LiMn2O4 with a high voltage. J Electrochem Soc 158:A1490–A1497

    Article  CAS  Google Scholar 

  16. Kim H, Hong J, Park K, Kim H, Kim S, Kang K (2014) Aqueous rechargeable li and Na ion batteries. Chem Rev 114:11788–11827

    Article  CAS  PubMed  Google Scholar 

  17. Alias N, Mohamad AZ (2015) Advances of aqueous rechargeable lithium-ion battery: a review. J Power Sources 274:237–251

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by Science and Engineering Research Board, Department of Science and Technology, Government of India (Grant No.: YSS/2015/000765).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamal K. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahan, H., Das, S.K. Active role of inactive current collector in aqueous aluminum-ion battery. Ionics 24, 2175–2180 (2018). https://doi.org/10.1007/s11581-018-2589-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2589-0

Keywords

Navigation