Effect of Absorption on the Efficiency of Terahertz Radiation Generation in the Metal Waveguide Partially Filled with Nonlinear Crystal LiNbO3, Dast or ZnTe

  • A. S. NikogosyanEmail author
  • R. M. Martirosyan
  • A. A. Hakhoumian
  • A. H. Makaryan
  • V. R. Tadevosyan
  • G. N. Goltsman
  • S. V. Antipov


The influence of terahertz (THz) radiation absorption on the efficiency of generation of coherent THz radiation in the system ‘nonlinear-optical crystal partially filling the cross section of a rectangular metal waveguide’ has been investigated. The efficiency of the nonlinear frequency conversion of optical laser radiation to the THz range depends on the loss in the system and the fulfillment of the phase-matching (FM) condition in a nonlinear crystal. The method of partially filling of a metal waveguide with a nonlinear optical crystal is used to ensure phase matching. The phase matching is achieved by numerical determination of the thickness of the nonlinear crystal, that is the degree of partial filling of the waveguide. The attenuation of THz radiation caused by losses both in the metal walls of the waveguide and in the crystal was studied, taking into account the dimension of the cross section of the waveguide, the degree of partial filling, and the dielectric constant of the crystal. It is shown that the partial filling of the waveguide with a nonlinear crystal results in an increase in the efficiency of generation of THz radiation by an order of magnitude, owing to the decrease in absorption.


absorption of terahertz radiation generation efficiency of coherent THz radiation nonlinear crystal waveguide partially filled with crystal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schlosse, W. and Unger, H.G., Advances in Microwaves, New York: Academic Press, 1966.Google Scholar
  2. 2.
    Gallot, G., Jamison, S.P., McGowan, R.W., and Grischkowsky, D., J. Opt. Soc. Am. B, 2000, vol. 17, p. 851.ADSCrossRefGoogle Scholar
  3. 3.
    Nikogosyan, A.S., Soviet Journal of Quantum Electronics, 1988, vol. 18(5), p. 624.Google Scholar
  4. 4.
    Laziev, E.M. and Nikoghosyan, A.S., SPIE, Mode–Locked Lasers and Ultrafast Phenomena, 1991, vol. 1842, p. 113.ADSCrossRefGoogle Scholar
  5. 5.
    Nikoghosyan, A.S., Martirosyan, R.M., Hakhoumian, A.A., Chamberlain, J.M., Dudley, R.A., and Zinov’ev, N.N., Electromagnetic waves and Electronic Systems, 2006, vol. 11(4), p. 47.Google Scholar
  6. 6.
    Zernike, F. and Midwinter, J.E., Applied Nonlinear Optics, New York: John Wiley and Sons, 1973.Google Scholar
  7. 7.
    Sutherland, R.L., Handbook of Nonlinear Optics, New York: Marcel Dekker, 1996, pp. 87–88.Google Scholar
  8. 8.
    Hebling, J., Yeh, K.–L., Hoffmann, M.C., Bartal, B., and Nelson, K.A., J. Opt. Soc. Am. B, 2008, vol. 25(7), p. B6.Google Scholar
  9. 9.
    Schneider, A., Stillhart, M., and Günter, P., Opt. Express, 2006, vol. 14, p. 5376.ADSCrossRefGoogle Scholar
  10. 10.
    Walther, M., Jensby, K., Keiding, S.R., Takahashi, H., and Ito, H., Opt. Lett., 2000, vol. 25, p. 911.ADSCrossRefGoogle Scholar
  11. 11.
    Schall, M., Helm, H., and Keiding, S.R., Int. J. Infrared Millim. Waves, 1999, vol. 20, p. 595.CrossRefGoogle Scholar
  12. 12.
    Schall, M., Walther, M., and Jepsen, P.U., Phys. Rev. B, 2001, vol. 64, p. 094301.ADSCrossRefGoogle Scholar
  13. 13.
    Pálfalvi, L., Hebling, J., Kuhl, J., Péter, A., and Polgár, K., J. Appl. Phys., 2005, vol. 97, p. 123505.ADSCrossRefGoogle Scholar
  14. 14.
    Yegorov, Yu.V., Chastichno zapolnennyye pryamougol'nyye volnovody (Partially Filled Rectangular Waveguides), Moscow: Sov. Radio, 1967.Google Scholar
  15. 15.
    Wu, X., Ravi, K., Huang, W.R., Zhоu, C., Zalden, P., et al., arXiv:1601.06921, 2016.Google Scholar
  16. 16.
    Huang, S.–W., Granados, E., Huang, W.R., Hong, K.–H., Zapata, L.E., and Kärtner, F.X., Optics Letters, 2013, vol. 38, p. 796.ADSCrossRefGoogle Scholar
  17. 17.
    Nikoghosyan, A.S., Roeser, H.P., Martirosyan, R.M., et al., 38th Int. Conf. IRMMW–THz, 2013, Th P3–04.Google Scholar
  18. 18.
    Monoszlai, B., Vicario, C., Jazbinsek, M., et al.,, 2013.Google Scholar
  19. 19.
    Vicario, C., Jazbinsek, M., Ovchinnikov, A.V., Chefonov, O.V., Ashitkov, S.I., Agranat, M.B., and Hauri, C.P., Optics Express, 2015, vol. 23, p. 4573.ADSCrossRefGoogle Scholar
  20. 20.
    Hoffmann, M.C. and Fulop, J.A., J. Phys. D: Appl. Phys., 2011, vol. 44, p. 083001.ADSCrossRefGoogle Scholar
  21. 21.
    Kang, B.J., Lee, S.–H., Kim, W.T., Lee, S.–C., et al., Adv. Funct. Mater., 2018, vol. 28, p. 1707195.CrossRefGoogle Scholar
  22. 22.
    Nikoghosyan, A.S., Ting, H., Shen, J., Мartirosyan, R.М., Tunyan, M.Yu., Papikyan, А.V., and Papikyan, А.А., J. Contemp. Phys. (Armenian Ac. Sci.), 2016, vol. 51, p. 256.CrossRefGoogle Scholar
  23. 23.
    Ranjkesh, N. and Shahabadi, M., Electronics Letters, 2006, vol. 42(21), p. 1230.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. S. Nikogosyan
    • 1
    Email author
  • R. M. Martirosyan
    • 1
    • 2
  • A. A. Hakhoumian
    • 3
  • A. H. Makaryan
    • 1
  • V. R. Tadevosyan
    • 1
  • G. N. Goltsman
    • 4
  • S. V. Antipov
    • 4
  1. 1.Yerevan State UniversityYerevanArmenia
  2. 2.National Academy of Sciences of the Republic of ArmeniaYerevanArmenia
  3. 3.Institute of Radiophysics and ElectronicsNAS of ArmeniaAshtarakArmenia
  4. 4.Moscow State Pedagogical UniversityMoscowRussia

Personalised recommendations