Skip to main content
Log in

Tumour necrosis factor - alpha mediated mechanisms of cognitive dysfunction

  • Review Article
  • Published:
Translational Neuroscience

Abstract

Background

Tumour necrosis factor - alpha (TNF-α) is a pro-inflammatory cytokine that combines a plethora of activities in the early stages of an immune response. TNF-α has gained increasing importance given TNF-α upregulation in multiple brain pathologies like neuropsychiatric conditions such as depression, schizophrenia, as well as neuroinflammatory disorder like multiple sclerosis (MS).

Aim

The aim of this review is to critically analyse neurobiological, immunological and molecular mechanisms through which TNF-α influences the development of cognitive dysfunction.

Principal findings/results

The review presents several lines of original research showing that the immunological properties of TNF-α exacerbate inflammatory responses in the central nervous system such as microglial and endothelial activation, lymphocytic and monocytic infiltration and the expression of downstream pro-inflammatory cytokines and apoptotic factors. Depression, schizophrenia, and MS all manifest symptoms of activated immune response along with cognitive dysfunction, with TNF-α overexpression as a central clinical feature common to these disorders. Furthermore, TNF-α acts negatively on neuroplasticity and the molecular mechanisms of memory and learning (i.e., long-term potentiation and long-term depression). TNF-α also exerts influence over the production of neurotrophins (i.e., nerve growth factor and brain-derived neurotrophic factor), neurogenesis, and dendritic branching.

Conclusions/significance

This review outlines that TNF-α and its receptors have a substantial yet underappreciated influence on the development and progression of neuropsychiatric symptoms across several disease entities. An improved understanding of these underlying mechanisms may help develop novel therapeutic targets in the form of drugs specifically targeting downstream products of TNF-α activation within the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collins P.Y., Patel V., Joestl S.S., March D., Insel T.R., Daar A.S., et al., Grand challenges in global mental health, Nature, 2011, 475, 27–30

    Article  PubMed  CAS  Google Scholar 

  2. Lieberman J.A., Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective, Biol. Psychiatry, 1999, 46, 729–739

    Article  PubMed  CAS  Google Scholar 

  3. Mandolesi G., Grasselli G., Musumeci G., Centonze D., Cognitive deficits in experimental autoimmune encephalomyelitis: neuroinflammation and synaptic degeneration, Neurol. Sci., 2010, 31, S255–259

    Article  PubMed  CAS  Google Scholar 

  4. Kupfer D.J., Frank E., Phillips M.L., Major depressive disorder: new clinical, neurobiological, and treatment perspectives, Lancet, 2012, 379, 1045–1055

    Article  PubMed  Google Scholar 

  5. Zorrilla E.P., Luborsky L., McKay J.R., Rosenthal R., Houldin A., Tax A., et al., The relationship of depression and stressors to immunological assays: a meta-analytic review, Brain. Behav. Immun., 2001, 15, 199–226

    Article  PubMed  CAS  Google Scholar 

  6. Miller A.H., Maletic V., Raison C.L., Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression, Biol. Psychiatry, 2009, 65, 732–741

    Article  PubMed  CAS  Google Scholar 

  7. Sharief M.K., Hentges R., Association between tumor necrosis factoralpha and disease progression in patients with multiple sclerosis, N. Engl. J. Med., 1991, 325, 467–472

    Article  PubMed  CAS  Google Scholar 

  8. Blume J., Douglas S.D., Evans D.L., Immune suppression and immune activation in depression, Brain Behav. Immun., 2011, 25, 221–229

    Article  PubMed  CAS  Google Scholar 

  9. Zunszain P.A., Hepgul N., Pariante C.M., Inflammation and Depression, Curr. Top. Behav. Neurosci., 2012, [Epub ahead of print]

  10. Lieberman A.P., Pitha P.M., Shin H.S., Shin M.L., Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus, Proc. Natl. Acad. Sci. USA, 1989, 86, 6348–6352

    Article  PubMed  CAS  Google Scholar 

  11. Rock R.B., Gekker G., Hu S., Sheng W.S., Cheeran M., Lokensgard J.R., et al., Role of microglia in central nervous system infections, Clin. Microbiol. Rev., 2004, 17, 942–964

    Article  PubMed  CAS  Google Scholar 

  12. Tsakiri N., Kimber I., Rothwell N.J., Pinteaux E., Differential effects of interleukin-1 alpha and beta on interleukin-6 and chemokine synthesis in neurones, Mol. Cell. Neurosci., 2008, 38, 259–265

    Article  PubMed  CAS  Google Scholar 

  13. Kaiya H., Uematsu M., Ofuji M., Nishida A., Takeuchi K., Nozaki M., et al., Elevated plasma prostaglandin E2 levels in schizophrenia, J. Neural. Transm., 1989, 77, 39–46

    Article  PubMed  CAS  Google Scholar 

  14. Dickerson F., Stallings C., Origoni A., Boronow J., Yolken R., C-reactive protein is associated with the severity of cognitive impairment but not of psychiatric symptoms in individuals with schizophrenia, Schizophr. Res., 2007, 93, 261–265

    Article  PubMed  Google Scholar 

  15. Theodoropoulou S., Spanakos G., Baxevanis C.N., Economou M., Gritzapis A.D., Papamichail M.P., et al., Cytokine serum levels, autologous mixed lymphocyte reaction and surface marker analysis in never medicated and chronically medicated schizophrenic patients, Schizophr. Res., 2001, 47, 13–25

    Article  PubMed  CAS  Google Scholar 

  16. Radewicz K., Garey L.J., Gentleman S.M., Reynolds R., Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics, J. Neuropathol. Exp. Neurol., 2000, 59, 137–150

    PubMed  CAS  Google Scholar 

  17. Bayer T.A., Buslei R., Havas L., Falkai P., Evidence for activation of microglia in patients with psychiatric illnesses, Neurosci. Lett., 1999, 271, 126–128

    Article  PubMed  CAS  Google Scholar 

  18. van Berckel B.N., Bossong M.G., Boellaard R., Kloet R., Schuitemaker A., Caspers E., et al., Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study, Biol. Psychiatry, 2008, 64, 820–822

    Article  PubMed  Google Scholar 

  19. Doorduin J., de Vries E.F., Willemsen A.T., de Groot J.C., Dierckx R.A., Klein H.C., Neuroinflammation in schizophrenia-related psychosis: a PET study, J. Nucl. Med., 2009, 50, 1801–1807

    Article  PubMed  Google Scholar 

  20. Niitsu T., Shirayama Y., Matsuzawa D., Hasegawa T., Kanahara N., Hashimoto T., et al., Associations of serum brain-derived neurotrophic factor with cognitive impairments and negative symptoms in schizophrenia, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35, 1836–1840

    Article  PubMed  CAS  Google Scholar 

  21. Campbell S., Marriott M., Nahmias C., MacQueen G.M., Lower hippocampal volume in patients suffering from depression: a metaanalysis, Am. J. Psychiatry, 2004, 161, 598–607

    Article  PubMed  Google Scholar 

  22. Ziehn M.O., Avedisian A.A., Tiwari-Woodruff S., Voskuhl R.R., Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE, Lab. Invest., 2010, 90, 774–786

    Article  Google Scholar 

  23. Renno T., Krakowski M., Piccirillo C., Lin J.Y., Owens T., TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines, J. Immunol., 1995, 154, 944–953

    PubMed  CAS  Google Scholar 

  24. Appenzeller S., Bertolo M.B., Costallat L.T., Cognitive impairment in rheumatoid arthritis, Methods Find. Exp. Clin. Pharmacol., 2004, 26, 339–343

    Article  PubMed  CAS  Google Scholar 

  25. El-Tantawy A.M., El-Sayed A.E., Kora B.A., Amin R.T., Psychiatric morbidity associated with some cytokines (IL-1beta, IL-12, IL-18 and TNF-alpha) among rheumatoid arthritis patients, Egypt. J. Immunol., 2008, 15, 1–11

    PubMed  Google Scholar 

  26. Hider S.L., Tanveer W., Brownfield A., Mattey D.L., Packham J.C., Depression in RA patients treated with anti-TNF is common and under-recognized in the rheumatology clinic, Rheumatology (Oxford), 2009, 48, 1152–1154

    Article  Google Scholar 

  27. Aloe L., Tuveri M.A., Levi-Montalcini R., Nerve growth factor and distribution of mast cells in the synovium of adult rats, Clin. Exp. Rheumatol., 1992, 10, 203–204

    PubMed  CAS  Google Scholar 

  28. Stellwagen D., Malenka R.C., Synaptic scaling mediated by glial TNFalpha, Nature, 2006, 440, 1054–1059

    Article  PubMed  CAS  Google Scholar 

  29. Golan H., Levav T., Mendelsohn A., Huleihel M., Involvement of tumor necrosis factor alpha in hippocampal development and function, Cereb. Cortex, 2004, 14, 97–105

    Article  PubMed  CAS  Google Scholar 

  30. Fiore M., Probert L., Kollias G., Akassoglou K., Alleva E., Aloe L., Neurobehavioral alterations in developing transgenic mice expressing TNF-alpha in the brain, Brain Behav. Immun., 1996, 10, 126–138

    Article  PubMed  CAS  Google Scholar 

  31. Baune B.T., Wiede F., Braun A., Golledge J., Arolt V., Koerner H., Cognitive dysfunction in mice deficient for TNF- and its receptors, Am. J. Med. Genet. B Neuropsychiatr. Genet., 2008, 147B, 1056–1064

    Article  PubMed  CAS  Google Scholar 

  32. Stellwagen D., Beattie E.C., Seo J.Y., Malenka R.C., Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha, J. Neurosci., 2005, 25, 3219–3228

    Article  PubMed  CAS  Google Scholar 

  33. Moher D., Liberati A., Tetzlaff J., Altman D.G., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement, J. Clin. Epidemiol., 2009, 62, 1006–1012

    Article  PubMed  Google Scholar 

  34. Medawar P.B., Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye, Br. J. Exp. Pathol., 1948, 29, 58–69

    PubMed  CAS  Google Scholar 

  35. Barker C.F., Billingham R.E., Immunologically privileged sites, Adv. Immunol., 1977, 25, 1–54

    Article  PubMed  CAS  Google Scholar 

  36. Ransohoff R.M., Kivisakk P., Kidd G., Three or more routes for leukocyte migration into the central nervous system, Nat. Rev. Immunol., 2003, 3, 569–581

    Article  PubMed  CAS  Google Scholar 

  37. Streilein J.W., Immune privilege as the result of local tissue barriers and immunosuppressive microenvironments, Curr. Opin. Immunol., 1993, 5, 428–432

    Article  PubMed  CAS  Google Scholar 

  38. Tabakman R., Lecht S., Sephanova S., Arien-Zakay H., Lazarovici P., Interactions between the cells of the immune and nervous system: neurotrophins as neuroprotection mediators in CNS injury, Prog. Brain Res., 2004, 146, 387–401

    PubMed  CAS  Google Scholar 

  39. Garay P.A., McAllister A.K., Novel roles for immune molecules in neural development: implications for neurodevelopmental disorders, Front. Synaptic Neurosci., 2010, 2, 136

    PubMed  Google Scholar 

  40. Boulanger L.M., Shatz C.J., Immune signalling in neural development, synaptic plasticity and disease, Nat. Rev. Neurosci., 2004, 5, 521–531

    Article  PubMed  CAS  Google Scholar 

  41. Zlokovic B.V., The blood-brain barrier in health and chronic neurodegenerative disorders, Neuron, 2008, 57, 178–201

    Article  PubMed  CAS  Google Scholar 

  42. Banks W.A., Erickson M.A., The blood-brain barrier and immune function and dysfunction, Neurobiol. Dis., 2010, 37, 26–32

    Article  PubMed  CAS  Google Scholar 

  43. Engelhardt B., Regulation of immune cell entry into the central nervous system, Results Probl. Cell. Differ., 2006, 43, 259–280

    Article  PubMed  CAS  Google Scholar 

  44. Brietzke E., Stertz L., Fernandes B.S., Kauer-Sant’anna M., Mascarenhas M., Escosteguy Vargas A., et al., Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder, J. Affect. Disord., 2009, 116, 214–217

    Article  PubMed  CAS  Google Scholar 

  45. Maccioni R.B., Rojo L.E., Fernandez J.A., Kuljis R.O., The role of neuroimmunomodulation in Alzheimer’s disease, Ann. NY Acad. Sci., 2009, 1153, 240–246

    Article  PubMed  CAS  Google Scholar 

  46. Bossu P., Ciaramella A., Salani F., Bizzoni F., Varsi E., Di Iulio F., et al., Interleukin-18 produced by peripheral blood cells is increased in Alzheimer’s disease and correlates with cognitive impairment, Brain Behav. Immun., 2008, 22, 487–492

    Article  PubMed  CAS  Google Scholar 

  47. Cross A.H., Waubant E., MS and the B cell controversy, Biochim. Biophys. Acta, 2011, 1812, 231–238

    Article  PubMed  CAS  Google Scholar 

  48. Pan W., Kastin A.J., TNFalpha transport across the blood-brain barrier is abolished in receptor knockout mice, Exp. Neurol., 2002, 174, 193–200

    Article  PubMed  CAS  Google Scholar 

  49. Miric D., Katanic R., Kisic B., Zoric L., Miric B., Mitic R., et al., Oxidative stress and myeloperoxidase activity during bacterial meningitis: effects of febrile episodes and the BBB permeability, Clin. Biochem., 2010, 43, 246–252

    Article  PubMed  CAS  Google Scholar 

  50. Leib S.L., Tauber M.G., Pathogenesis of bacterial meningitis, Infect. Dis. Clin. North Am., 1999, 13, 527–548, v–vi

    Article  PubMed  CAS  Google Scholar 

  51. Nishioku T., Matsumoto J., Dohgu S., Sumi N., Miyao K., Takata F., et al., Tumor necrosis factor-alpha mediates the blood-brain barrier dysfunction induced by activated microglia in mouse brain microvascular endothelial cells, J. Pharmacol. Sci., 2010, 112, 251–254

    Article  PubMed  CAS  Google Scholar 

  52. Forster C., Burek M., Romero I.A., Weksler B., Couraud P.O., Drenckhahn D., Differential effects of hydrocortisone and TNFalpha on tight junction proteins in an in vitro model of the human blood-brain barrier, J. Physiol., 2008, 586, 1937–1949

    Article  PubMed  CAS  Google Scholar 

  53. Aslam M., Ahmad N., Srivastava R., Hemmer B., TNF-alpha induced NFkappaB signaling and p65 (RelA) overexpression repress Cldn5 promoter in mouse brain endothelial cells, Cytokine, 2012, 57, 269–275

    Article  PubMed  CAS  Google Scholar 

  54. Wake H., Moorhouse A.J., Nabekura J., Functions of microglia in the central nervous system — beyond the immune response, Neuron Glia Biol., 2012, 1–7

  55. Butovsky O., Talpalar A.E., Ben-Yaakov K., Schwartz M., Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective, Mol. Cell. Neurosci., 2005, 29, 381–393

    Article  PubMed  CAS  Google Scholar 

  56. Morgan S.C., Taylor D.L., Pocock J.M., Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades, J. Neurochem., 2004, 90, 89–101

    Article  PubMed  CAS  Google Scholar 

  57. Medana I.M., Hunt N.H., Chaudhri G., Tumor necrosis factor-alpha expression in the brain during fatal murine cerebral malaria: evidence for production by microglia and astrocytes, Am. J. Pathol., 1997, 150, 1473–1486

    PubMed  CAS  Google Scholar 

  58. Tracey K.J., Tumor necrosis factor (cachectin) in the biology of septic shock syndrome, Circ. Shock, 1991, 35, 123–128

    PubMed  CAS  Google Scholar 

  59. Bielefeldt Ohmann H., Campos M., Snider M., Rapin N., Beskorwayne T., Popowych Y., et al., Effect of chronic administration of recombinant bovine tumor necrosis factor to cattle, Vet. Pathol., 1989, 26, 462–472

    Article  PubMed  CAS  Google Scholar 

  60. Probert L., Keffer J., Corbella P., Cazlaris H., Patsavoudi E., Stephens S., et al., Wasting, ischemia, and lymphoid abnormalities in mice expressing T cell-targeted human tumor necrosis factor transgenes, J. Immunol., 1993, 151, 1894–1906

    PubMed  CAS  Google Scholar 

  61. Das S., Basu A., Inflammation: a new candidate in modulating adult neurogenesis, J. Neurosci. Res., 2008, 86, 1199–1208

    Article  PubMed  CAS  Google Scholar 

  62. Albensi B.C., Mattson M.P., Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity, Synapse, 2000, 35, 151–159

    Article  PubMed  CAS  Google Scholar 

  63. Horiuchi T., Mitoma H., Harashima S., Tsukamoto H., Shimoda T., Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents, Rheumatology (Oxford), 2010, 49, 1215–1228

    Article  CAS  Google Scholar 

  64. Wajant H., Pfizenmaier K., Scheurich P., Tumor necrosis factor signaling, Cell. Death Differ., 2003, 10, 45–65

    Article  PubMed  CAS  Google Scholar 

  65. Black R.A., Rauch C.T., Kozlosky C.J., Peschon J.J., Slack J.L., Wolfson M.F., et al., A metalloproteinase disintegrin that releases tumournecrosis factor-alpha from cells, Nature, 1997, 385, 729–733

    Article  PubMed  CAS  Google Scholar 

  66. McCoy M.K., Tansey M.G., TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease, J. Neuroinflammation, 2008, 5, 45

    Article  PubMed  CAS  Google Scholar 

  67. Li J., Ramenaden E.R., Peng J., Koito H., Volpe J.J., Rosenberg P.A., Tumor necrosis factor alpha mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present, J. Neurosci., 2008, 28, 5321–5330

    Article  PubMed  CAS  Google Scholar 

  68. Kassiotis G., Kollias G., Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination, J. Exp. Med., 2001, 193, 427–434

    Article  PubMed  CAS  Google Scholar 

  69. Grell M., Wajant H., Zimmermann G., Scheurich P., The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor, Proc. Natl. Acad. Sci. USA, 1998, 95, 570–575

    Article  PubMed  CAS  Google Scholar 

  70. Chen G., Goeddel D.V., TNF-R1 signaling: a beautiful pathway, Science, 2002, 296, 1634–1635

    Article  PubMed  CAS  Google Scholar 

  71. Hsu H., Xiong J., Goeddel D.V., The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation, Cell, 1995, 81, 495–504

    Article  PubMed  CAS  Google Scholar 

  72. Hsu H., Shu H.B., Pan M.G., Goeddel D.V., TRADD-TRAF2 and TRADDFADD interactions define two distinct TNF receptor 1 signal transduction pathways, Cell, 1996, 84, 299–308

    Article  PubMed  CAS  Google Scholar 

  73. Micheau O., Tschopp J., Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes, Cell, 2003, 114, 181–190

    Article  PubMed  CAS  Google Scholar 

  74. Shu H.B., Takeuchi M., Goeddel D.V., The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex, Proc. Natl. Acad. Sci USA, 1996, 93, 13973–13978

    Article  PubMed  CAS  Google Scholar 

  75. Winston B.W., Lange-Carter C.A., Gardner A.M., Johnson G.L., Riches D.W., Tumor necrosis factor alpha rapidly activates the mitogenactivated protein kinase (MAPK) cascade in a MAPK kinase kinasedependent, c-Raf-1-independent fashion in mouse macrophages, Proc. Natl. Acad. Sci. USA, 1995, 92, 1614–1618

    Article  PubMed  CAS  Google Scholar 

  76. Tobiume K., Matsuzawa A., Takahashi T., Nishitoh H., Morita K., Takeda K., et al., ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis, EMBO Rep., 2001, 2, 222–228

    Article  PubMed  CAS  Google Scholar 

  77. Ghosh S., Karin M., Missing pieces in the NF-kappaB puzzle, Cell, 2002, 109Suppl, S81–96

    Article  PubMed  CAS  Google Scholar 

  78. Camandola S., Mattson M.P., NF-kappa B as a therapeutic target in neurodegenerative diseases, Expert Opin. Ther. Targets, 2007, 11, 123–132

    Article  PubMed  CAS  Google Scholar 

  79. Rothe M., Pan M.G., Henzel W.J., Ayres T.M., Goeddel D.V., The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins, Cell, 1995, 83, 1243–1252

    Article  PubMed  CAS  Google Scholar 

  80. Marchetti L., Klein M., Schlett K., Pfizenmaier K., Eisel U.L., Tumor necrosis factor (TNF)-mediated neuroprotection against glutamateinduced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway, J. Biol. Chem., 2004, 279, 32869–32881

    Article  PubMed  CAS  Google Scholar 

  81. Bliss T.V., Collingridge G.L., A synaptic model of memory: long-term potentiation in the hippocampus, Nature, 1993, 361, 31–39

    Article  PubMed  CAS  Google Scholar 

  82. Wang G., Gilbert J., Man H.Y., AMPA receptor trafficking in homeostatic synaptic plasticity: functional molecules and signaling cascades, Neural Plast., 2012, 2012, 825364

    PubMed  Google Scholar 

  83. Lipsky R.H., Xu K., Zhu D., Kelly C., Terhakopian A., Novelli A., et al., Nuclear factor kappaB is a critical determinant in N-methyl-Daspartate receptor-mediated neuroprotection, J. Neurochem., 2001, 78, 254–264

    Article  PubMed  CAS  Google Scholar 

  84. Beattie E.C., Stellwagen D., Morishita W., Bresnahan J.C., Ha B.K., Von Zastrow M., et al., Control of synaptic strength by glial TNFalpha, Science, 2002, 295, 2282–2285

    Article  PubMed  CAS  Google Scholar 

  85. Butler M.P., O’Connor J.J., Moynagh P.N., Dissection of tumor-necrosis factor-alpha inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early-but not late-phase LTP, Neuroscience, 2004, 124, 319–326

    Article  PubMed  CAS  Google Scholar 

  86. Bolshakov V.Y., Carboni L., Cobb M.H., Siegelbaum S.A., Belardetti F., Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3-CA1 synapses, Nat. Neurosci., 2000, 3, 1107–1112

    Article  PubMed  CAS  Google Scholar 

  87. Wang Q., Walsh D.M., Rowan M.J., Selkoe D.J., Anwyl R., Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5, J. Neurosci., 2004, 24, 3370–3378

    Article  PubMed  CAS  Google Scholar 

  88. Ono K., Han J., The p38 signal transduction pathway: activation and function, Cell. Signal., 2000, 12, 1–13

    Article  PubMed  CAS  Google Scholar 

  89. Pickering M., Cumiskey D., O’Connor J.J., Actions of TNF-alpha on glutamatergic synaptic transmission in the central nervous system, Exp. Physiol., 2005, 90, 663–670

    Article  PubMed  CAS  Google Scholar 

  90. Hallbook F., Evolution of the vertebrate neurotrophin and Trk receptor gene families, Curr. Opin. Neurobiol., 1999, 9, 616–621

    Article  PubMed  CAS  Google Scholar 

  91. Huang E.J., Reichardt L.F., Neurotrophins: roles in neuronal development and function, Annu. Rev. Neurosci., 2001, 24, 677–736

    Article  PubMed  CAS  Google Scholar 

  92. Lewin G.R., Barde Y.A., Physiology of the neurotrophins, Annu. Rev. Neurosci., 1996, 19, 289–317

    Article  PubMed  CAS  Google Scholar 

  93. Sofroniew M.V., Howe C.L., Mobley W.C., Nerve growth factor signaling, neuroprotection, and neural repair, Annu. Rev. Neurosci., 2001, 24, 1217–1281

    Article  PubMed  CAS  Google Scholar 

  94. Henderson C.E., Role of neurotrophic factors in neuronal development, Curr. Opin. Neurobiol., 1996, 6, 64–70

    Article  PubMed  CAS  Google Scholar 

  95. Aloe L., Properzi F., Probert L., Akassoglou K., Kassiotis G., Micera A., et al., Learning abilities, NGF and BDNF brain levels in two lines of TNFalpha transgenic mice, one characterized by neurological disorders, the other phenotypically normal, Brain Res., 1999, 840, 125–137

    Article  PubMed  CAS  Google Scholar 

  96. Takei Y., Laskey R., Interpreting crosstalk between TNF-alpha and NGF: potential implications for disease, Trends Mol. Med., 2008, 14, 381–388

    Article  PubMed  CAS  Google Scholar 

  97. Takei Y., Laskey R., Intracellular and intercellular cross talk between NGF and TNF, Adv. Exp. Med. Biol., 2011, 691, 559–565

    Article  PubMed  CAS  Google Scholar 

  98. Saha R.N., Liu X., Pahan K., Up-regulation of BDNF in astrocytes by TNF-alpha: a case for the neuroprotective role of cytokine, J. Neuroimmune Pharmacol., 2006, 1, 212–222

    Article  PubMed  Google Scholar 

  99. Streit W.J., Mrak R.E., Griffin W.S., Microglia and neuroinflammation: a pathological perspective, J. Neuroinflammation, 2004, 1, 14

    Article  PubMed  CAS  Google Scholar 

  100. Khairova R.A., Machado-Vieira R., Du J., Manji H.K., A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder, Int. J. Neuropsychopharmacol., 2009, 12, 561–578

    Article  PubMed  CAS  Google Scholar 

  101. Potvin S., Stip E., Sepehry A.A., Gendron A., Bah R., Kouassi E., Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review, Biol. Psychiatry, 2008, 63, 801–808

    Article  PubMed  CAS  Google Scholar 

  102. Schmidt H.D., Shelton R.C., Duman R.S., Functional biomarkers of depression: diagnosis, treatment, and pathophysiology, Neuropsychopharmacology, 2011, 36, 2375–2394

    Article  PubMed  CAS  Google Scholar 

  103. Eyre H., Baune B.T., Neuroimmunological effects of physical exercise in depression, Brain Behav. Immun., 2012, 26, 251–266

    Article  PubMed  CAS  Google Scholar 

  104. Mirescu C., Gould E., Stress and adult neurogenesis, Hippocampus, 2006, 16, 233–238

    Article  PubMed  CAS  Google Scholar 

  105. Leonard B.E., Myint A., The psychoneuroimmunology of depression, Hum. Psychopharmacol., 2009, 24, 165–175

    PubMed  CAS  Google Scholar 

  106. Brydon L., Harrison N.A., Walker C., Steptoe A., Critchley H.D., Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans, Biol. Psychiatry, 2008, 63, 1022–1029

    Article  PubMed  CAS  Google Scholar 

  107. Reichenberg A., Yirmiya R., Schuld A., Kraus T., Haack M., Morag A., et al., Cytokine-associated emotional and cognitive disturbances in humans, Arch. Gen. Psychiatry, 2001, 58, 445–452

    Article  PubMed  CAS  Google Scholar 

  108. Dantzer R., O’Connor J.C., Freund G.G., Johnson R.W., Kelley K.W., From inflammation to sickness and depression: when the immune system subjugates the brain, Nat. Rev. Neurosci., 2008, 9, 46–56

    Article  PubMed  CAS  Google Scholar 

  109. Dowlati Y., Herrmann N., Swardfager W., Liu H., Sham L., Reim E.K., et al., A meta-analysis of cytokines in major depression, Biol. Psychiatry, 2010, 67, 446–457

    Article  PubMed  CAS  Google Scholar 

  110. Howren M.B., Lamkin D.M., Suls J., Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis, Psychosom. Med., 2009, 71, 171–186

    Article  PubMed  CAS  Google Scholar 

  111. Bernardino L., Agasse F., Silva B., Ferreira R., Grade S., Malva J.O., Tumor necrosis factor-alpha modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures, Stem Cells, 2008, 26, 2361–2371

    Article  PubMed  CAS  Google Scholar 

  112. Tilleux S., Hermans E., Neuroinflammation and regulation of glial glutamate uptake in neurological disorders, J. Neurosci. Res., 2007, 85, 2059–2070

    Article  PubMed  CAS  Google Scholar 

  113. Kaster M.P., Gadotti V.M., Calixto J.B., Santos A.R., Rodrigues A.L., Depressive-like behavior induced by tumor necrosis factor-alpha in mice, Neuropharmacology, 2012, 62, 419–426

    Article  PubMed  CAS  Google Scholar 

  114. You Z., Luo C., Zhang W., Chen Y., He J., Zhao Q., et al., Pro- and antiinflammatory cytokines expression in rat’s brain and spleen exposed to chronic mild stress: Involvement in depression, Behav. Brain Res., 225, 135–141

  115. Kafitz K.W., Rose C.R., Konnerth A., Neurotrophin-evoked rapid excitation of central neurons, Prog. Brain Res., 2000, 128, 243–249

    Article  PubMed  CAS  Google Scholar 

  116. Gavillet M., Allaman I., Magistretti P.J., Modulation of astrocytic metabolic phenotype by proinflammatory cytokines, Glia, 2008, 56, 975–989

    Article  PubMed  Google Scholar 

  117. Hamidi M., Drevets W.C., Price J.L., Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes, Biol. Psychiatry, 2004, 55, 563–569

    Article  PubMed  Google Scholar 

  118. Ongur D., Drevets W.C., Price J.L., Glial reduction in the subgenual prefrontal cortex in mood disorders, Proc. Natl. Acad. Sci. USA, 1998, 95, 13290–13295

    Article  PubMed  CAS  Google Scholar 

  119. Steiner J., Bielau H., Brisch R., Danos P., Ullrich O., Mawrin C., et al., Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide, J. Psychiatr. Res., 2008, 42, 151–157

    Article  PubMed  Google Scholar 

  120. Arguello P.A., Gogos J.A., Cognition in mouse models of schizophrenia susceptibility genes, Schizophr. Bull., 2010, 36, 289–300

    Article  PubMed  Google Scholar 

  121. Drzyzga L., Obuchowicz E., Marcinowska A., Herman Z.S., Cytokines in schizophrenia and the effects of antipsychotic drugs, Brain Behav. Immun., 2006, 20, 532–545

    Article  PubMed  CAS  Google Scholar 

  122. Muller N., Riedel M., Gruber R., Ackenheil M., Schwarz M.J., The immune system and schizophrenia. An integrative view, Ann. NY Acad. Sci., 2000, 917, 456–467

    Article  PubMed  CAS  Google Scholar 

  123. Coelho F.M., Reis H.J., Nicolato R., Romano-Silva M.A., Teixeira M.M., Bauer M.E., et al., Increased serum levels of inflammatory markers in chronic institutionalized patients with schizophrenia, Neuroimmunomodulation, 2008, 15, 140–144

    PubMed  CAS  Google Scholar 

  124. Boin F., Zanardini R., Pioli R., Altamura C.A., Maes M., Gennarelli M., Association between -G308A tumor necrosis factor alpha gene polymorphism and schizophrenia, Mol. Psychiatry, 2001, 6, 79–82

    Article  PubMed  CAS  Google Scholar 

  125. Schwab S.G., Mondabon S., Knapp M., Albus M., Hallmayer J., Borrmann-Hassenbach M., et al., Association of tumor necrosis factor alpha gene — G308A polymorphism with schizophrenia, Schizophr. Res., 2003, 65, 19–25

    Article  PubMed  Google Scholar 

  126. Wilson A.G., Symons J.A., McDowell T.L., McDevitt H.O., Duff G.W., Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation, Proc. Natl. Acad. Sci. USA, 1997, 94, 3195–3199

    Article  PubMed  CAS  Google Scholar 

  127. Shi J., Levinson D.F., Duan J., Sanders A.R., Zheng Y., Pe’er I., et al., Common variants on chromosome 6p22.1 are associated with schizophrenia, Nature, 2009, 460, 753–757

    PubMed  CAS  Google Scholar 

  128. Ingason A., Rujescu D., Cichon S., Sigurdsson E., Sigmundsson T., Pietilainen O.P., et al., Copy number variations of chromosome 16p13.1 region associated with schizophrenia, Mol. Psychiatry, 2011, 16, 17–25

    Article  PubMed  CAS  Google Scholar 

  129. Stefansson H., Sigurdsson E., Steinthorsdottir V., Bjornsdottir S., Sigmundsson T., Ghosh S., et al., Neuregulin 1 and susceptibility to schizophrenia, Am. J. Hum. Genet., 2002, 71, 877–892

    Article  PubMed  Google Scholar 

  130. Li B., Woo R.S., Mei L., Malinow R., The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity, Neuron, 2007, 54, 583–597

    Article  PubMed  CAS  Google Scholar 

  131. Marballi K., Quinones M.P., Jimenez F., Escamilla M.A., Raventos H., Soto-Bernardini M.C., et al., In vivo and in vitro genetic evidence of involvement of neuregulin 1 in immune system dysregulation, J. Mol. Med. (Berl), 2010, 88, 1133–1141

    Article  CAS  Google Scholar 

  132. Durany N., Michel T., Zochling R., Boissl K.W., Cruz-Sanchez F.F., Riederer P., et al., Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses, Schizophr. Res., 2001, 52, 79–86

    Article  PubMed  CAS  Google Scholar 

  133. Green M.J., Matheson S.L., Shepherd A., Weickert C.S., Carr V.J., Brainderived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis, Mol. Psychiatry, 2011, 16, 960–972

    Article  PubMed  CAS  Google Scholar 

  134. Lassmann H., Bruck W., Lucchinetti C., Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy, Trends Mol. Med., 2001, 7, 115–121

    Article  PubMed  CAS  Google Scholar 

  135. Korner H., Sedgwick J.D., Tumour necrosis factor and lymphotoxin: molecular aspects and role in tissue-specific autoimmunity, Immunol. Cell Biol., 1996, 74, 465–472

    Article  PubMed  CAS  Google Scholar 

  136. Ruddle N.H., Bergman C.M., McGrath K.M., Lingenheld E.G., Grunnet M.L., Padula S.J., et al., An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis, J. Exp. Med., 1990, 172, 1193–1200

    Article  PubMed  CAS  Google Scholar 

  137. Korner H., Lemckert F.A., Chaudhri G., Etteldorf S., Sedgwick J.D., Tumor necrosis factor blockade in actively induced experimental autoimmune encephalomyelitis prevents clinical disease despite activated T cell infiltration to the central nervous system, Eur. J. Immunol., 1997, 27, 1973–1981

    Article  PubMed  CAS  Google Scholar 

  138. Selmaj K., Raine C.S., Cannella B., Brosnan C.F., Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions, J. Clin. Invest., 1991, 87, 949–954

    Article  PubMed  CAS  Google Scholar 

  139. Kuroda Y., Shimamoto Y., Human tumor necrosis factor-alpha augments experimental allergic encephalomyelitis in rats, J. Neuroimmunol., 1991, 34, 159–164

    Article  PubMed  CAS  Google Scholar 

  140. Barten D.M., Ruddle N.H., Vascular cell adhesion molecule-1 modulation by tumor necrosis factor in experimental allergic encephalomyelitis, J. Neuroimmunol., 1994, 51, 123–133

    Article  PubMed  CAS  Google Scholar 

  141. Korner H., Riminton D.S., Strickland D.H., Lemckert F.A., Pollard J.D., Sedgwick J.D., Critical points of tumor necrosis factor action in central nervous system autoimmune inflammation defined by gene targeting, J. Exp. Med., 1997, 186, 1585–1590

    Article  PubMed  CAS  Google Scholar 

  142. Suvannavejh G.C., Lee H.O., Padilla J., Dal Canto M.C., Barrett T.A., Miller S.D., Divergent roles for p55 and p75 tumor necrosis factor receptors in the pathogenesis of MOG(35–55)-induced experimental autoimmune encephalomyelitis, Cell. Immunol., 2000, 205, 24–33

    Article  PubMed  CAS  Google Scholar 

  143. D’Intino G., Paradisi M., Fernandez M., Giuliani A., Aloe L., Giardino L., et al., Cognitive deficit associated with cholinergic and nerve growth factor down-regulation in experimental allergic encephalomyelitis in rats, Proc. Natl. Acad. Sci. USA, 2005, 102, 3070–3075

    Article  PubMed  CAS  Google Scholar 

  144. Roosendaal S.D., Hulst H.E., Vrenken H., Feenstra H.E., Castelijns J.A., Pouwels P.J., et al., Structural and functional hippocampal changes in multiple sclerosis patients with intact memory function, Radiology, 2010, 255, 595–604

    Article  PubMed  Google Scholar 

  145. Anisman H., Merali Z., Hayley S., Neurotransmitter, peptide and cytokine processes in relation to depressive disorder: comorbidity between depression and neurodegenerative disorders, Prog. Neurobiol., 2008, 85, 1–74

    Article  PubMed  CAS  Google Scholar 

  146. Terrando N., Monaco C., Ma D., Foxwell B.M., Feldmann M., Maze M., Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline, Proc. Natl. Acad. Sci. USA, 2010, 107, 20518–20522

    Article  PubMed  CAS  Google Scholar 

  147. McAfoose J., Baune B.T., Evidence for a cytokine model of cognitive function, Neurosci. Biobehav. Rev., 2009, 33, 355–366

    Article  PubMed  CAS  Google Scholar 

  148. Peschon J.J., Torrance D.S., Stocking K.L., Glaccum M.B., Otten C., Willis C.R., et al., TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation, J. Immunol., 1998, 160, 943–952

    PubMed  CAS  Google Scholar 

  149. Longhi L., Ortolano F., Zanier E.R., Perego C., Stocchetti N., De Simoni M.G., Effect of traumatic brain injury on cognitive function in mice lacking p55 and p75 tumor necrosis factor receptors, Acta Neurochir. Suppl., 2008, 102, 409–413

    Article  PubMed  CAS  Google Scholar 

  150. McAfoose J., Koerner H., Baune B.T., The effects of TNF deficiency on age-related cognitive performance, Psychoneuroendocrinology, 2009, 34, 615–619

    Article  PubMed  CAS  Google Scholar 

  151. Akassoglou K., Probert L., Kontogeorgos G., Kollias G., Astrocytespecific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice, J. Immunol., 1997, 158, 438–445

    PubMed  CAS  Google Scholar 

  152. Dean B., Tawadros N., Scarr E., Gibbons A.S., Regionallyspecific changes in levels of tumour necrosis factor in the dorsolateral prefrontal cortex obtained postmortem from subjects with major depressive disorder, J. Affect. Disord., 2010, 120, 245–248

    Article  PubMed  CAS  Google Scholar 

  153. Grassi-Oliveira R., Brietzke E., Pezzi J.C., Lopes R.P., Teixeira A.L., Bauer M.E., Increased soluble tumor necrosis factor-alpha receptors in patients with major depressive disorder, Psychiatry Clin. Neurosci., 2009, 63, 202–208

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard T. Baune.

Additional information

These authors should be regarded as joint first authors as they have contributed equally to the manuscript.

About this article

Cite this article

Baune, B.T., Camara, ML., Eyre, H. et al. Tumour necrosis factor - alpha mediated mechanisms of cognitive dysfunction. Translat.Neurosci. 3, 263–277 (2012). https://doi.org/10.2478/s13380-012-0027-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-012-0027-8

Keywords

Navigation