Advertisement

Opto-Electronics Review

, Volume 20, Issue 1, pp 53–60 | Cite as

Cavity ring down spectroscopy: detection of trace amounts of substance

  • T. Stacewicz
  • J. Wojtas
  • Z. Bielecki
  • M. Nowakowski
  • J. Mikołajczyk
  • R. Mędrzycki
  • B. Rutecka
Article

Abstract

We describe several applications of cavity ring-down spectroscopy (CRDS) for trace matter detection. NO2 sensor was constructed in our team using this technique and blue-violet lasers (395–440 nm). Its sensitivity is better than single ppb. CRDS at 627 nm was used for detection of NO3. Successful monitoring of N2O in air requires high precision mid-infrared spectroscopy. These sensors might be used for atmospheric purity monitoring as well as for explosives detection. Here, the spectroscopy on sharp vibronic molecular resonances is performed. Therefore the single mode lasers which can be tuned to selected molecular lines are used. Similarly, the spectroscopy at 936 nm was used for sensitive water vapour detection. The opportunity of construction of H2O sensor reaching the sensitivity about 10 ppb is also discussed.

Keywords

trace matter detection absorption spectroscopy laser spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Herbelin, J.A. McKay, M.A. Kwok, R.H. Uenten, D.S. Urevig, D.J. Spencer, and D.J. Benard, “Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method”, Appl. Optics 19, 144–147 (1980).CrossRefADSGoogle Scholar
  2. 2.
    A. O’Keefe and D.A.G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources”, Rev. Sci. Instrum. 59, 2544–2551 (1988).CrossRefADSGoogle Scholar
  3. 3.
    K.W. Busch and M.A. Busch, Cavity-Ringdown Spectroscopy, an Ultratrace-Absorption Measurement Technique, ACS Symposium series, American Chemical Society, Washington DC, 1999.CrossRefGoogle Scholar
  4. 4.
    G. Berden and R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications, Wiley-Blackwell, Chichester, 2009.CrossRefGoogle Scholar
  5. 5.
    R. Engeln, G. Berden, R. Peeters, and G. Meier, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy”, Rev. Sci. Instrum. 69, 3763–3769 (1998).CrossRefADSGoogle Scholar
  6. 6.
    L. Menzel, A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser”, Appl. Phys. B72, 1–5 (2001).Google Scholar
  7. 7.
    J.H. Seinfeld and S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, New Yersey, 2006.Google Scholar
  8. 8.
    L. Falkowska and K. Korzeniewski, Atmosphere Chemistry, Gdańsk University Publishing Office, Gdańsk, 1995. (in Polish)Google Scholar
  9. 9.
    A.M. Winer, J.W. Peters, J.P. Smith, and Jr J.N. Pitts, “Response of commercial chemiluminescent nitric oxide-nitrogen dioxide analyzers to other nitrogen-containing compounds”, Environ. Sci. Technol. 8, 1118–1121 (1974).CrossRefGoogle Scholar
  10. 10.
    W.A. McClenny, E.J. Williams, R.C. Cohen, and J. Stutz, “Methods for ambient air monitoring of NO, NO2, NOy, and individual NOz species”, J. Air Waste Manage. Assoc. 52, 542–562 (2002).Google Scholar
  11. 11.
    V.L. Kasyutich, C.E. Canosa-Mas, C. Pfrang, S. Vaughan, and R.P. Wayne, “Off-axis continuous-wave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers”, Appl. Phys. B75, 755–761 (2002).CrossRefADSGoogle Scholar
  12. 12.
    V.L. Kasyutich, C.S.E. Bale, C.E. Canosa-Mas, C. Pfrang, S. Vaughan, and R.P. Wayne, “Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode”, Appl. Phys. B76, 691–697 (2003).ADSGoogle Scholar
  13. 13.
    P.L. Kebabian, S.C. Herdon, and A. Freedman, “Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy”, Anal. Chem. 77, 724–728 (2005).CrossRefGoogle Scholar
  14. 14.
    P.L. Kebabian, E.C. Wood, S.C. Herdon, and A. Freedman, “A practical alternative to chemiluminescence-based detection of nitrogen-dioxide: cavity attenuated phase shift spectroscopy”, Environ. Sci. Technol. 42, 6040–6045 (2008).CrossRefGoogle Scholar
  15. 15.
    H.D. Osthoff, S.S. Brown, T.B. Ryerson, T.J. Fortin, B.M. Lerner, E.J. Williams, A. Pettersson, T. Baynard, W.B. Dubé, S.J. Ciciora, and A.R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy”, J. Geophys. Res. 111, D12305 (2006).CrossRefADSGoogle Scholar
  16. 16.
    K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity ring-down absorption spectrography based on filament-generated supercontinuum light”, Opt. Express 17, 3673–3678 (2009).CrossRefADSGoogle Scholar
  17. 17.
    K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißr, A. Czyżewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ringdown spectroscopy”, Appl. Phys. B94, 396–373 (2009).Google Scholar
  18. 18.
    J.M. Langridge, T. Laurila, R.S. Watt, R.L. Jones, C.F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source”, Opt. Express 16, 10178–10188 (2008).CrossRefADSGoogle Scholar
  19. 19.
    J. Wojtas, A. Czyżewski, T. Stacewicz, and Z. Bielecki, “Detection of NO2 using cavity enhanced methods”, Opt. Appl. 36, 461–467 (2006).Google Scholar
  20. 20.
    J. Wojtas and Z. Bielecki, “Signal processing system in the cavity enhanced spectroscopy”, Opto-Electron. Rev. 16, 44–51 (2008).CrossRefGoogle Scholar
  21. 21.
    M. Nowakowski, J. Wojtas, Z. Bielecki, and J. Mikołajczyk, “Cavity enhanced absorption spectroscopy sensor”, Acta Phys. Pol. A116, 363–367 (2009).ADSGoogle Scholar
  22. 22.
    Z. D. Stasicka, Photochemical Processes in the Environment, Jagiellonian University Publisher, Cracow, 2001. (in Polish)Google Scholar
  23. 23.
    Z. Kęcki, Fundamentals of Molecular Spectroscopy, PWN, Warsaw, 1998. (in Polish)Google Scholar
  24. 24.
    R.J. Yokelson, J.B. Burholder, R.W. Fox, R.K. Talukdar, and A.R. Ravishankara, “Temperature dependence of the NO3 absorption spectrum”, J. Phys. Chem. 98, 13144–13150 (1994).CrossRefGoogle Scholar
  25. 25.
    W.J. Marinelli, D.M. Svanson, and H.S. Johnson, “Absorption cross sections and line shape for the NO3(0-0) band”, J. Chem. Phys. 76, 2864–2870 (1982).CrossRefADSGoogle Scholar
  26. 26.
    A. Dziewulska-Łosiowa, Ozone in the Atmosphere, PWN, Warsaw, 1991. (in Polish)Google Scholar
  27. 27.
  28. 28.
  29. 29.
    L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, Jr. C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, Y.J Mandin, S.T. Massie, J. Orphalh, A. Perrinh, C.P. Rinslando, M.A.H. Smitho, J. Tennyson, R.N. Tolchenov, R.A. Tothe, J. Vander Auwera, P. Varanasi, and G. Wagnerd, “The HITRAN 2004 molecular spectroscopic database”, J. Quant. Spectrosc. Ra. 96, 139–204 (2005).CrossRefADSGoogle Scholar
  30. 30.
    J.T. Hodges, D. Lisak, N. Lavrentieva, A. Bykov, L. Sinitsa, J. Tennyson, R.J. Barber, and R.N. Tolchenov, “Comparison between theoretical calculations and high-resolution measurements of pressure broadening for near-infrared water spectra”, J. Mol. Spectrosc. 249, 86–94 (2008).CrossRefADSGoogle Scholar
  31. 31.
    D. Lisak and J.T. Hodges, “Low-uncertainty H2O line intensities for the 930-nm region”, J. Mol. Spectrosc. 249, 6–13 (2008).CrossRefADSGoogle Scholar
  32. 32.
    D. Lisak and J.T. Hodges, “High-resolution cavity ring-down spectroscopy measurements of blended H2O transitions”, Appl. Phys. B88, 317–325 (2007).ADSGoogle Scholar
  33. 33.
    D. Lisak, J.T. Hodges, and R. Ciuryło, “Comparison of semiclassical line-shape models to rovibrational H2O spectra measured by frequency-stabilized cavity ring-down spectroscopy”, Phys. Rev. A73, 012507–13 (2006).ADSGoogle Scholar
  34. 34.

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • T. Stacewicz
    • 1
  • J. Wojtas
    • 2
  • Z. Bielecki
    • 2
  • M. Nowakowski
    • 2
  • J. Mikołajczyk
    • 2
  • R. Mędrzycki
    • 2
  • B. Rutecka
    • 2
  1. 1.Institute of Experimental PhysicsUniversity of WarsawWarsawPoland
  2. 2.Military University of TechnologyWarsawPoland

Personalised recommendations