Skip to main content
Log in

Cavity ring down spectroscopy: detection of trace amounts of substance

  • Published:
Opto-Electronics Review

Abstract

We describe several applications of cavity ring-down spectroscopy (CRDS) for trace matter detection. NO2 sensor was constructed in our team using this technique and blue-violet lasers (395–440 nm). Its sensitivity is better than single ppb. CRDS at 627 nm was used for detection of NO3. Successful monitoring of N2O in air requires high precision mid-infrared spectroscopy. These sensors might be used for atmospheric purity monitoring as well as for explosives detection. Here, the spectroscopy on sharp vibronic molecular resonances is performed. Therefore the single mode lasers which can be tuned to selected molecular lines are used. Similarly, the spectroscopy at 936 nm was used for sensitive water vapour detection. The opportunity of construction of H2O sensor reaching the sensitivity about 10 ppb is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Herbelin, J.A. McKay, M.A. Kwok, R.H. Uenten, D.S. Urevig, D.J. Spencer, and D.J. Benard, “Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method”, Appl. Optics 19, 144–147 (1980).

    Article  ADS  Google Scholar 

  2. A. O’Keefe and D.A.G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources”, Rev. Sci. Instrum. 59, 2544–2551 (1988).

    Article  ADS  Google Scholar 

  3. K.W. Busch and M.A. Busch, Cavity-Ringdown Spectroscopy, an Ultratrace-Absorption Measurement Technique, ACS Symposium series, American Chemical Society, Washington DC, 1999.

    Book  Google Scholar 

  4. G. Berden and R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications, Wiley-Blackwell, Chichester, 2009.

    Book  Google Scholar 

  5. R. Engeln, G. Berden, R. Peeters, and G. Meier, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy”, Rev. Sci. Instrum. 69, 3763–3769 (1998).

    Article  ADS  Google Scholar 

  6. L. Menzel, A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser”, Appl. Phys. B72, 1–5 (2001).

    Google Scholar 

  7. J.H. Seinfeld and S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, New Yersey, 2006.

    Google Scholar 

  8. L. Falkowska and K. Korzeniewski, Atmosphere Chemistry, Gdańsk University Publishing Office, Gdańsk, 1995. (in Polish)

    Google Scholar 

  9. A.M. Winer, J.W. Peters, J.P. Smith, and Jr J.N. Pitts, “Response of commercial chemiluminescent nitric oxide-nitrogen dioxide analyzers to other nitrogen-containing compounds”, Environ. Sci. Technol. 8, 1118–1121 (1974).

    Article  Google Scholar 

  10. W.A. McClenny, E.J. Williams, R.C. Cohen, and J. Stutz, “Methods for ambient air monitoring of NO, NO2, NOy, and individual NOz species”, J. Air Waste Manage. Assoc. 52, 542–562 (2002).

    Google Scholar 

  11. V.L. Kasyutich, C.E. Canosa-Mas, C. Pfrang, S. Vaughan, and R.P. Wayne, “Off-axis continuous-wave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers”, Appl. Phys. B75, 755–761 (2002).

    Article  ADS  Google Scholar 

  12. V.L. Kasyutich, C.S.E. Bale, C.E. Canosa-Mas, C. Pfrang, S. Vaughan, and R.P. Wayne, “Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode”, Appl. Phys. B76, 691–697 (2003).

    ADS  Google Scholar 

  13. P.L. Kebabian, S.C. Herdon, and A. Freedman, “Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy”, Anal. Chem. 77, 724–728 (2005).

    Article  Google Scholar 

  14. P.L. Kebabian, E.C. Wood, S.C. Herdon, and A. Freedman, “A practical alternative to chemiluminescence-based detection of nitrogen-dioxide: cavity attenuated phase shift spectroscopy”, Environ. Sci. Technol. 42, 6040–6045 (2008).

    Article  Google Scholar 

  15. H.D. Osthoff, S.S. Brown, T.B. Ryerson, T.J. Fortin, B.M. Lerner, E.J. Williams, A. Pettersson, T. Baynard, W.B. Dubé, S.J. Ciciora, and A.R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy”, J. Geophys. Res. 111, D12305 (2006).

    Article  ADS  Google Scholar 

  16. K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity ring-down absorption spectrography based on filament-generated supercontinuum light”, Opt. Express 17, 3673–3678 (2009).

    Article  ADS  Google Scholar 

  17. K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißr, A. Czyżewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ringdown spectroscopy”, Appl. Phys. B94, 396–373 (2009).

    Google Scholar 

  18. J.M. Langridge, T. Laurila, R.S. Watt, R.L. Jones, C.F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source”, Opt. Express 16, 10178–10188 (2008).

    Article  ADS  Google Scholar 

  19. J. Wojtas, A. Czyżewski, T. Stacewicz, and Z. Bielecki, “Detection of NO2 using cavity enhanced methods”, Opt. Appl. 36, 461–467 (2006).

    Google Scholar 

  20. J. Wojtas and Z. Bielecki, “Signal processing system in the cavity enhanced spectroscopy”, Opto-Electron. Rev. 16, 44–51 (2008).

    Article  Google Scholar 

  21. M. Nowakowski, J. Wojtas, Z. Bielecki, and J. Mikołajczyk, “Cavity enhanced absorption spectroscopy sensor”, Acta Phys. Pol. A116, 363–367 (2009).

    ADS  Google Scholar 

  22. Z. D. Stasicka, Photochemical Processes in the Environment, Jagiellonian University Publisher, Cracow, 2001. (in Polish)

    Google Scholar 

  23. Z. Kęcki, Fundamentals of Molecular Spectroscopy, PWN, Warsaw, 1998. (in Polish)

    Google Scholar 

  24. R.J. Yokelson, J.B. Burholder, R.W. Fox, R.K. Talukdar, and A.R. Ravishankara, “Temperature dependence of the NO3 absorption spectrum”, J. Phys. Chem. 98, 13144–13150 (1994).

    Article  Google Scholar 

  25. W.J. Marinelli, D.M. Svanson, and H.S. Johnson, “Absorption cross sections and line shape for the NO3(0-0) band”, J. Chem. Phys. 76, 2864–2870 (1982).

    Article  ADS  Google Scholar 

  26. A. Dziewulska-Łosiowa, Ozone in the Atmosphere, PWN, Warsaw, 1991. (in Polish)

    Google Scholar 

  27. http://www.hitran.com

  28. http://badc.nerc.ac.uk/data/esa-wv

  29. L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, Jr. C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, Y.J Mandin, S.T. Massie, J. Orphalh, A. Perrinh, C.P. Rinslando, M.A.H. Smitho, J. Tennyson, R.N. Tolchenov, R.A. Tothe, J. Vander Auwera, P. Varanasi, and G. Wagnerd, “The HITRAN 2004 molecular spectroscopic database”, J. Quant. Spectrosc. Ra. 96, 139–204 (2005).

    Article  ADS  Google Scholar 

  30. J.T. Hodges, D. Lisak, N. Lavrentieva, A. Bykov, L. Sinitsa, J. Tennyson, R.J. Barber, and R.N. Tolchenov, “Comparison between theoretical calculations and high-resolution measurements of pressure broadening for near-infrared water spectra”, J. Mol. Spectrosc. 249, 86–94 (2008).

    Article  ADS  Google Scholar 

  31. D. Lisak and J.T. Hodges, “Low-uncertainty H2O line intensities for the 930-nm region”, J. Mol. Spectrosc. 249, 6–13 (2008).

    Article  ADS  Google Scholar 

  32. D. Lisak and J.T. Hodges, “High-resolution cavity ring-down spectroscopy measurements of blended H2O transitions”, Appl. Phys. B88, 317–325 (2007).

    ADS  Google Scholar 

  33. D. Lisak, J.T. Hodges, and R. Ciuryło, “Comparison of semiclassical line-shape models to rovibrational H2O spectra measured by frequency-stabilized cavity ring-down spectroscopy”, Phys. Rev. A73, 012507–13 (2006).

    ADS  Google Scholar 

  34. http://www.systechinstruments.com/products/MM500-selected=moisture

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Stacewicz.

About this article

Cite this article

Stacewicz, T., Wojtas, J., Bielecki, Z. et al. Cavity ring down spectroscopy: detection of trace amounts of substance. Opto-Electron. Rev. 20, 53–60 (2012). https://doi.org/10.2478/s11772-012-0006-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-012-0006-1

Keywords

Navigation