Skip to main content

Advertisement

Log in

Environmental impact of heated mining waters on clitellate (Annelida: Clitellata) assemblages

  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Mining is a relatively highly monitored industry. While chemical pollutants (toxic ions, radionuclides, etc.) have mostly been eliminated from mining waters, other types of environmental pollution (temperature regime alterations, high concentrations of various anions, etc.) can affect benthic invertebrates. In this study, we focused on the effect of mining water effluent on the diversity and density of aquatic Clitellata. Four sampling sites were selected. Three sites in a natural stream (the Nedvědička River, Czech Republic), one upstream and two downstream from the mining effluent, and one site on the mining waters were sampled monthly during 2008–2009. Environmental variables were recorded in and samples were collected from two types of habitats — riffles and pools. The response of clitellate assemblages was evaluated using principal component analysis and generalised estimating equations. The results indicated that the mining effluent caused partial species exchange and had negative effects on clitellate taxa richness and abundance. These responses were specific to both the habitat (riffle/pool) and species sampled. In each of the different taxa studied, we observed one of four typical clitellate responses: (a) elimination of stenotherm species; (b) reduction of clitellate species followed by quick recovery; (c) neutral response; or (d) positive influence. We found that aquatic clitellates, which are considered to be eurytopic with broad ecological valences, are also sensitive to even slight environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames B., McCann J. & Yamasaki E. 1975. Methods for detecting carcinogens and mutagens with the Salmonella/mammalianmicrosome mutagenicity test. Mutation Res. 31(6): 347–364. DOI: 10.1016/0165-1161(75)90046-1

    Article  PubMed  CAS  Google Scholar 

  • Batty L.C., Atkin L. & Manning D.A.C 2005. Assessment of the ecological potential of mine-water treatment wetland using a baseline survey of macroinvertebrate communities. Environ. Pollut. 138(3): 412–419. DOI: 10.1016/j.envpol.2005.04.022

    Article  PubMed  CAS  Google Scholar 

  • Bojková J., Schenková J., Horsák M. & Hájek M. 2011. Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia 667(1): 159–171. DOI: 10.1007/s10750-011-0634-3

    Article  Google Scholar 

  • Brinkhurst R.O. & Cook D.G. 1974. Aquatic earthworms (Annelida: Oligochaeta), pp. 143–156. In: Hart C.W. Jr & Fuller S.L.H. (eds), Pollution Ecology of Freshwater Invertebrates, Academic Press, New York, 389 pp. ISBN-13: 978-0123284501, ISBN-10: 0123284503

    Google Scholar 

  • Cellot B. & Juget J. 1998. Oligochaete drift in a large river (French Upper Rhôe): the effect of life cycle and discharge. Hydrobiologia 389(1–3): 183–191. DOI: 10.1023/A:1003511916699

    Article  Google Scholar 

  • Directive 2008/105/EC of European Parliament and of the Council on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC”, OJ L348, pp. 84–97, 24.12.2008

  • Dumnicka E. 2000. Studies on Oligochaeta taxocens in streams, interstitial and cave waters of southern Poland with remarks on Aphanoneura and Polychaeta distribution. Acta Zool. Cracov. 43(3–4): 339–392.

    Google Scholar 

  • Dumnicka E. & Galas J. 2006. Distribution of benthic fauna in relation to environmental conditions in an inundated opencast sulphur mine (Piaseczno reservoir, Southern Poland). Aquat. Ecol. 40(2): 203–210. DOI: 10.1007/s10452-005-6040-z

    Article  CAS  Google Scholar 

  • Dumnicka E. & Pasternak K. 1978. The influence of physicochemical properties of water and bottom sediments in the River Nida on the distribution and numbers of Oligochaeta. Acta. Hydrobiol. (Cracow) 20(3): 215–232.

    CAS  Google Scholar 

  • Generlich O. & Giere O. 1996. Osmoregulation in two aquatic oligochaetes from habitats with different salinity and comparison to other annelids. Hydrobiologia 334(1–3): 251–261. DOI: 10.1007/BF00017375

    Article  Google Scholar 

  • Haidekker A. & Hering D. 2008. Relationship between insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: A multivariate study. Aquat. Ecol. 42(3): 463–481. DOI: 10.1007/s10452-007-9097-z

    Article  Google Scholar 

  • Hogg I.D. & Williams D.D. 1996. Response of stream invertebrates to a global-warming thermal regime: an ecosystemlevel manipulation. Ecology 77(2): 395–407. DOI: http://dx.doi.org/10.2307/2265617

    Article  Google Scholar 

  • Hrabě S. 1981. Vodní máloštětinatci (Oligochaeta) Československa. Acta Univ. Carol. Biol. 1–2, 1979, 168 pp.

  • Hojsgaard S., Halekoh U. & Yan J. 2006. The R Package geepack for generalized estimating equations. J. Stat. Soft. 15(2): 1–11.

    Google Scholar 

  • Hudcová H., Badurová J., Rozkošný M., Funková R., Svobodová J. & Sova J. 2012. Ovlivnění jakosti vod a sedimentů v povodí řeky Nedvědičky těžbou a zpracováním uranových rud. VTEI Vodohospodářské Technicko-ekonomické Informace 54(3): 5–10.

    Google Scholar 

  • Hynes H.B.N. 1970. The Ecology of Running Waters. Liverpool University Press, Liverpool, 555 pp. ISBN: 0802016898, 9780802016898

    Google Scholar 

  • Korn H. 1963. Studien zur Ökologie der Oligochaeten in der oberen Donau unter Berücksichtigung der Abwassereinwirkungen. Arch. Hydrobiol. 27(2): 131–182. DOI: 10.1127/agdonauforschung/1/1963/131

    Google Scholar 

  • Krodkiewska M. 2005. The Oligochaeta communities in the benthos of artificially heated Rybnik dam reservoir (Poland). J. Freshwater Ecol. 20(1): 117–122. DOI: 10.1080/02705060.2005.9664944

    Article  Google Scholar 

  • Krodkiewska M. & Michalik-Kucharz A. 2009. The bottom Oligochaeta communities in sand pits of different trophic status in Upper Silesia. Aquat. Ecol. 43(2): 437–444. DOI: 10.1007/s10452-008-9199-2

    Article  CAS  Google Scholar 

  • Lakly M.B. & McArthur J.V. 2000. Macroinvertebrate recovery of a post-thermal stream: habitat structure and biotic function. Ecol. Engineer. 15(Suppl. 1): S87–S100. DOI: 10.1016/S0925-8574(99)00075-0

    Article  Google Scholar 

  • Lehmkuhl D.M. 1972. Change in thermal regime as a cause of reduction of benthic fauna downstream of a reservoir. J. Fish. Res. Board Canada, 29(9): 1329–1332. DOI: 10.1139/f72-201

    Article  Google Scholar 

  • Maret T.R., Cain D.J., MacCoy D.E. & Short T.M. 2003. Response of benthic invertebrate assemblages to metal exposure and bioaccumulation associated with hard-rock mining in northwesterm streams, USA. J. N. Am. Benthol. Soc. 22(4): 598–620.

    Article  Google Scholar 

  • Martínez-Ansemil E. & Collado R. 1996. Distribution patterns of aquatic oligochaetes inhabiting watercourses in the Northwestern Iberian Peninsula. Hydrobiologia 334(1): 73–83. DOI: 10.1007/BF00017355

    Article  Google Scholar 

  • Miliša M., Živković V. & Habdija I. 2010. Destructive effect of quarry effluent on life in a mountain stream. Biologia 65(3): 520–526. DOI: 10.2478/s11756-010-0044-4

    Article  Google Scholar 

  • Nedeau E.J., Merritt R.W. & Kaufman M.G. 2003. The effect of an industrial effluent on an urban stream benthic community: water quality vs. habitat quality. Environ. Pollut. 123(1): 1–13. DOI: 10.1016/S0269-7491(02)00363-9

    Article  CAS  Google Scholar 

  • Nijboer R.C., Wetzel M.J. & Verdonschot P.F.M. 2004. Diversity and distribution of Tubificidae, Naididae, and Lumbriculidae (Annelida: Oligochaeta) in the Netherlands: an evaluation of twenty years of monitoring data. Hydrobiologia 520(1–3): 127–141. DOI: 10.1023/B:HYDR.0000027732.88238.61

    Article  Google Scholar 

  • Preston R.L. 2009. Osmoregulation in Annelids, pp. 135–160. In: Evans D.H. (ed.), Osmotic and Ionic Regulation: Cells and Animals, CRC Press, Boca Raton, 606 pp. ISBN: 9780849380303

    Google Scholar 

  • Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H. & Wagner H. 2011. vegan: Community Ecology Package. R package version 2.0-2. http://CRAN.R-project.org/package=vegan

    Google Scholar 

  • Quinn J.M. & Hickey C.W. 1990. Characterisation and classification of benthic invertebrate communities in 88 New Zealand rivers in relation to environmental factors. N. Z. J. Mar. Freshwater Res. 24(3): 387–409. DOI: 10.1080/00288330.1990.9516432

    Article  CAS  Google Scholar 

  • Quinn J.M., Steele G.L., Hickey C.W. & Vickers M.L. 1994. Upper thermal tolerances of twelve New Zealand stream invertebrate species. N. Z. J. Mar. Freshwater Res. 28(4): 391–397. DOI: 10.1080/00288330.1994.9516629

    Article  Google Scholar 

  • R Development Core Team 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Saltveit S.J., Bremnes T. & Brittain J.E. 1994. Effect of a changed temperature regime on the benthos of a Norwegian regulated river. Regul. Rivers: Res. & Manage. 9(2): 93–102. DOI: 10.1002/rrr.3450090203

    Article  Google Scholar 

  • Schenková J., Helešic J. & Jarkovsky J. 2006. Seasonal dynamics of Bythonomus lemani and Bothrioneurum vejdovskyanum (Oligochaeta, Annelida) in relation to environmental variables. Biologia 61(5): 517–523. DOI: 10.2478/s11756-006-0085-x

    Article  Google Scholar 

  • Schenková J., Komárek O. & Zahrádková S. 2001. Oligochaeta of the Morava and Odra River basins (Czech Republic): species distribution and community composition. Hydrobiologia 463: 235–240. DOI: 10.1007/978-94-010-0597-524

    Article  Google Scholar 

  • Schwank P. 1981. Turbellarien, Oligochaeten und Archianneliden des Breitenbachs und anderer oberhessischer Mittelgebirgsbäche. II. Die Systematik und Autökologie der einzelnen Arten. Schlitzer Produktionsbiologische Studien (43-2). Arch. Hydrobiol. Suppl. 62(1): 86–147.

    Google Scholar 

  • Straka M., Syrovátka V. & Helešic J. 2012. Temporal and spatial macroinvertebrate variance compared: crutial role of CPOM in a headwater stream. Hydrobiologia 686(1): 119–134. DOI: 10.1007/s10750-012-1003-6

    Article  Google Scholar 

  • Syrovátka V., Schenková J. & Brabec K. 2009. The distribution of chironomid larvae and oligochaetes within a stony-bottomed river stretch: the role of substrate and hydraulic characteristics. Fund. Appl. Limnol. / Arch. Hydrobiol. 174(1): 43–62. DOI: 10.1127/1863-9135/2009/0174-0043

    Article  Google Scholar 

  • Taylor B.R. & Dykstra A.N. 2005. Effect of hot ground water on a small swamp-stream in Nova Scotia, Canada. Hydrobiologia 545(1): 129–144. DOI: 10.1007/s10750-005-2745-1

    Article  Google Scholar 

  • Thomas P. & Liber K. 2001. An estimation of radiation doses to benthic invertebrates from sediments collected near a Canadian uranium mine. Environ. Int. 27(4): 341–353. DOI: 10.1016/S0160-4120(01)00085-X

    Article  PubMed  CAS  Google Scholar 

  • Uzunov V., Košel V. & Sládeček V. 1988. Indicator value of freshwater Oligochaeta. Acta Hydrochim. Hydrobiol. 16(2): 173–186. DOI: 10.1002/aheh.19880160207

    Article  Google Scholar 

  • Verdonschot P.F.M. 2006. Beyond masses and blooms: the indicative value of oligochaetes. Hydrobiologia 564: 127–142. DOI: 10.1007/1-4020-5368-1_13

    Article  Google Scholar 

  • Voelz N.J., Poff N.L. & Ward J.V. 1994. Differential effects of a brief thermal disturbance on caddisflies (Trichoptera) in a regulated river. Am. Midl. Nat. 132(1): 173–182.

    Article  Google Scholar 

  • Wellborn G.A. & Robinson J.V. 1996. Effects of a thermal effluent on macroinvertebrates in a Central Texas Reservoir. Am. Midl. Nat. 136(1): 110–120.

    Article  Google Scholar 

  • Živić I., Marković Z. & Brajković M. 2006. Influence of the temperature regime on the composition of the macrozoobenthos community in a thermal brook in Serbia. Biologia 61(2): 179–191. DOI: 10.2478/s11756-006-0029-5

    Article  Google Scholar 

  • Živić I., Živić M., Milošević D., Bjelanović K., Stanojlović S., Daljević R. & Marković Z. 2013. The effects of geothermal water inflow on longitudinal changes in benthic macroinvertebrate community composition of a temperate stream. J. Therm. Biol. 38(5): 255–263. DOI: 10.1016/j.jtherbio.2013.03.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Růžičková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Růžičková, S., Schenková, J., Weissová, V. et al. Environmental impact of heated mining waters on clitellate (Annelida: Clitellata) assemblages. Biologia 69, 1179–1189 (2014). https://doi.org/10.2478/s11756-014-0424-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0424-2

Key words

Navigation