Skip to main content

Advertisement

Log in

Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Spring fens are isolated treeless wetlands of a high conservation value. Their environmental conditions are strongly related to their groundwater chemistry, which controls species distribution within various groups of organisms. Clitellates, a dominant group of non-insect aquatic fauna, however, have never been studied in these habitats. It is unclear from previous studies to what extent the distribution of aquatic non-insect taxa reflects water chemistry rather than the substrate structure. We studied 34 spring fens sampled in 17 isolated sites in the Western Carpathian Mountains to determine mainly the effects of water chemistry and substrate structure on variation in species richness and composition of clitellate assemblages as examples of the non-insect fauna. A total of 34 taxa were found, with 3–15 taxa collected per sample. Species richness was negatively correlated with water mineral concentration measured as water electric conductivity (r = −0.57, P < 0.001) and positively with TOC (r = 0.60, P < 0.001). Surprisingly, the lowest number of taxa was found in calcareous fens and richness increased towards Sphagnum-fens. There was a species turnover related to changes in mineral richness and substrate characters. The main change of species composition was promoted by changes in substrate structure. The second gradient of species composition was linked with the amount of nutrients, moisture, and dominance of sphagna, and was associated with an increase of eurytopic species in fens with high nutrient availability. It was difficult to separate the effects of water chemistry and substrate on clitellate species distributions owing to the fact that variation in tufa precipitation and vegetation was driven by water chemistry changes. This study presented the first quantitative data on fen clitellate assemblages, which appear to have an unusual pattern of species richness. In contrast to plants and molluscs, calcareous fens appeared to be a harsh environment for clitellate species. Only few specialized species, mainly Trichodrilus strandi, were able to establish viable populations. The significant effect of water chemistry on clitellate distribution patterns raises questions about the direct influence of water chemistry on non-insect aquatic taxa, which have previously been considered to be mostly determined by substrate characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barquín, J. & R. G. Death, 2004. Patterns of invertebrate diversity in streams and freshwater springs in Northern Spain. Archiv für Hydrobiologie 161: 329–349.

    Article  Google Scholar 

  • Bojková, J. & J. Helešic, 2009. Spring fens as a unique biotope of stonefly larvae (Plecoptera): species richness and species composition gradients. In Staniczek, A. H. (ed.), International Perspectives in Mayfly and Stonefly Research. Proceedings of the 12th International Conference on Ephemeroptera and the 16th International Symposium on Plecoptera, Stuttgart 2008. Aquatic Insects 31(Suppl. 1): 365–373.

  • Brinkhurst, R. O. & D. G. Cook, 1974. Aquatic earthworms (Annelida: Oligochaeta). In Hart, C. W. Jr. & S. L. H. Fuller (eds), Pollution Ecology of Freshwater Invertebrates. Academic Press, New York/London: 143–156.

    Google Scholar 

  • Brinkhurst, R. O. & S. R. Gelder, 1991. Annelida: Oligochaeta and Branchiobdellida. In Thorp, T. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates. Academic Press, New York: 401–435.

    Google Scholar 

  • Cragg, J. B., 1961. Some aspects of the ecology of moorland animals. Journal of Ecology 49: 477–506.

    Article  Google Scholar 

  • du Rietz, G. E., 1949. Huvudenheter och huvudgränser i svensk myrvegetation. Svensk Botanisk Tidskrift 43: 274–309.

    Google Scholar 

  • Dumnicka, E., 2001. Some remarks on the origin of stygobiontic oligochaetes. Mémoires de Biospéologie 28: 39–45.

    Google Scholar 

  • Dumnicka, E., 2006. Composition and abundance of oligochaetes (Annelida: Oligochaeta) in springs of Kraków-Częstochowa Upland (Southern Poland): effect of spring encasing and environmental factors. Polish Journal of Ecology 54: 231–242.

    Google Scholar 

  • Dumnicka, E. & A. Boggero, 2007. Freshwater Oligochaeta in two mountain ranges in Europe: the Tatra Mountains (Poland) and the Alps (Italy). Fundamental and Applied Limnology 168: 231–242.

    Article  Google Scholar 

  • Dumnicka, E., J. Galas & P. Koperski, 2007. Benthic invertebrates in karst springs: does substratum or location define communities? International Review of Hydrobiology 92: 452–464.

    Article  Google Scholar 

  • Erman, D. C. & N. A. Erman, 1975. Macroinvertebrate composition and production in some Sierra Nevada minerotrophic peatlands. Ecology 56: 591–603.

    Article  Google Scholar 

  • Erséus, C., 2005. Phylogeny of oligochaetous Clitellata. Hydrobiologia 535(536): 357–372.

    Article  Google Scholar 

  • Erséus, C., M. J. Wetzel & L. Gustavson, 2008. ICZN rules – a farewell to Tubificidae (Annelida, Clitellata). Zootaxa 1744: 66–68.

    Google Scholar 

  • Fránková, M., J. Bojková, A. Poulíčková & M. Hájek, 2009. The structure and species richness of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness. Fottea 9: 355–368.

    Google Scholar 

  • Giere, O., 1993. Meiobenthology, the Microscopic Fauna in Aquatic Sediments. Springer, Berlin.

    Google Scholar 

  • Glazier, D. S., 1991. The fauna of North American temperate cold springs: patterns and hypotheses. Freshwater Biology 26: 527–542.

    Article  Google Scholar 

  • Glazier, D. S. & J. L. Gooch, 1987. Macroinvertebrate assemblages in Pennsylvania (USA) springs. Hydrobiologia 150: 33–43.

    Article  CAS  Google Scholar 

  • Graefe, U. & R. M. Schmelz, 1999. Indicator values, strategy, types and life forms of terrestrial Enchytraeidae and other microannelids. Newsletter on Enchytraeidae 6: 59–67.

    Google Scholar 

  • Hájek, M. & P. Hekera, 2004. Can seasonal variation in fen water chemistry influence the reliability of vegetation-environment analyses? Preslia 76: 1–14.

    Google Scholar 

  • Hájek, M., P. Hekera & P. Hájková, 2002. Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobotanica 37: 205–224.

    Article  Google Scholar 

  • Hájek, M., P. Hájková, K. Rybníček & P. Hekera, 2005. Present vegetation of spring fens and its relation to water chemistry. In Poulíčková, A., M. Hájek & K. Rybníček (eds), Ecology and Palaeoecology of Spring Fens of the West Carpathians. Palacký University, Olomouc: 69–103.

    Google Scholar 

  • Hájek, M., M. Horsák, P. Hájková & D. Dítě, 2006. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspectives in Plant Ecology, Evolution and Systematics 8: 97–114.

    Article  Google Scholar 

  • Hájková, P., P. Wolf & M. Hájek, 2004. Environmental factors and Carpathian spring fen vegetation: the importance of scale and temporal variation. Annales Botanici Fennici 41: 249–262.

    Google Scholar 

  • Hill, T. & P. Lewicki, 2007. Statistics: Methods and Applications. StatSoft, Tulsa.

    Google Scholar 

  • Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6: 65–70.

    Google Scholar 

  • Horsák, M., 2006. Mollusc community patterns and species response curves along a mineral richness gradient: a case study in fens. Journal of Biogeography 33: 98–107.

    Article  Google Scholar 

  • Horsák, M. & M. Hájek, 2003. Composition and species richness of mollusc communities in relation to vegetation and water chemistry in the Western Carpathian spring fens: the poor–rich gradient. Journal of Molluscan Studies 69: 349–357.

    Article  Google Scholar 

  • Horsák, M., M. Hájek, L. Tichý & L. Juřičková, 2007. Plant indicator values as a tool for land mollusc autecology assessment. Acta Oecologica 32: 161–171.

    Article  Google Scholar 

  • Hrabě, S., 1954. Klíč k určování zvířeny ČSR, Vol. 1. ČSAV, Praha.

    Google Scholar 

  • Hrabě, S., 1981. Vodní máloštětinatci (Oligochaeta) Československa. Acta Universitatis Carolinae-Biologia 1979: 1–168.

    Google Scholar 

  • Juget, J., 1987. Contribution to the study of the Rhyacodrilinae (Tubificidae, Oligochaeta), with description of two new stygobiont species from the alluvial plain of the French upper Rhone, Rhyacodrilus amphigenus, sp. n. and Rhizodriloides phreaticola, g. n., sp. n. Hydrobiologia 155: 107–188.

    Article  Google Scholar 

  • Košel, V., 2001. Hirudinológia pre hydrobiológov v praxi. In Makovinská, J. & L. Tóthová (eds), Zborník z hydrobiologického kurzu 2001. Rajecké Teplice: 37–54.

  • Lang, C., 1998. Contrasting responses of oligochaetes (Annelida) and chironomids (Diptera) to the abatement of eutrophication in Lake Neuchâtel. Aquatic Sciences 61: 206–214.

    Article  Google Scholar 

  • Langheinrich, U., S. Tischew, R. M. Gersberg & V. Lüderitz, 2004. Ditches and canals in management of fens: opportunity or risk? A case study in the Drömling Natural Park, Germany. Wetland Ecology and Management 12: 429–445.

    Article  Google Scholar 

  • Latter, P. M. & G. Howson, 1978. Studies on the microfauna of blanket bog with particular reference to Enchytraeidae. II. Growth and survival of Cognettia sphagnetorum on various substrates. Journal of Animal Ecology 47: 425–448.

    Article  Google Scholar 

  • Lepš, J. & P. Šmilauer, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lundkvist, H., 1982. Population dynamics of Cognettia sphagnetorum (Enchytraeidae) in a Scots pine forest soil in Central Sweden. Pedobiologia 23: 21–41.

    Google Scholar 

  • Malmer, N., 1986. Vegetational gradients in relation to environmental conditions in north western European mires. Canadian Journal of Botany 64: 375–383.

    Article  Google Scholar 

  • Martínez-Ansemil, E. & R. Collado, 1996. Distribution patterns of aquatic oligochaetes inhabiting watercourses in the Northwestern Iberian Peninsula. Hydrobiologia 334: 73–83.

    Article  Google Scholar 

  • Montanholi-Martins, M. C. & A. M. Takeda, 1999. Communities of benthic oligochaetes in relation to sediment structure in the upper Paraná River, Brazil. Studies on Neotropical Fauna and Environment 34: 52–58.

    Article  Google Scholar 

  • Moore, J. W., 1978. Importance of algae in the diet of the oligochaetes Lumbriculus variegatus (Müller) and Rhyacodrilus sodalis (Eisen). Oecologia 35: 357–363.

    Article  Google Scholar 

  • Neubert, E. & H. Nesemann, 1999. Annelida, Clitellata; Branchiobdellida, Acanthobdellea, Hirudinea. Süsswasserfauna von Mitteleuropa, Band 6/2. Spektrum Academischer Verlag, Berlin.

  • Nielsen, C. O. & B. Christensen, 1959. The Enchytraeidae – critical revision and taxonomy of European species (studies on Enchytraeidae VII). Natura Jutlandica 8–9: 1–160.

    Google Scholar 

  • Nielsen, C. O. & B. Christensen, 1961. The Enchytraeidae – critical revision and taxonomy of European species. Natura Jutlandica 10(Suppl 1): 1–23.

    Google Scholar 

  • Nielsen, C. O. & B. Christensen, 1963. The Enchytraeidae – critical revision and taxonomy of European species. Natura Jutlandica 10(Suppl 2): 1–19.

    Google Scholar 

  • Nijboer, R. C., M. J. Wetzel & P. F. M. Verdonschot, 2004. Diversity and distribution of Tubificidae, Naididae, and Lumbriculidae (Annelida: Oligochaeta) in the Netherlands: an evaluation of twenty years of monitoring data. Hydrobiologia 520: 127–141.

    Article  Google Scholar 

  • Økland, R. H., 1999. On the variation explained by ordination and constrained ordination axes. Journal of Vegetation Sciences 10: 131–136.

    Article  Google Scholar 

  • Omesová, M. & J. Helešic, 2004. On the processing of freeze-core samples with notes on the impact of sample size. Scripta Facultatis Scientiarum naturalium Universitatis Masarykianae Brunensis, Biology 29: 59–66.

    Google Scholar 

  • Opravilová, V. & M. Hájek, 2006. The variation of testacean assemblages (Rhizopoda) along the complete base-richness gradient in fens: a case study from the Western Carpathians. Acta Protozoologica 45: 191–204.

    Google Scholar 

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • Poulíčková, A., K. Bogdanová, P. Hekera & P. Hájková, 2003. Epiphytic diatoms of the spring fens in the flysch area of the Western Carpathians. Biologia 58: 749–757.

    Google Scholar 

  • Poulíčková, A., M. Hájek & K. Rybníček (eds), 2005. Ecology and Palaeoecology of Spring Fens in the Western Part of the Carpathians. Palacký University, Olomouc.

    Google Scholar 

  • Rapant, S., K. Vrana & D. Bodiš, 1996. Geochemical Atlas of Slovakia. Part Groundwater. GSSR, Bratislava.

    Google Scholar 

  • Rozbrojová, Z. & M. Hájek, 2008. Changes in nutrient limitation of spring fen vegetation across environmental gradients in the West Carpathians. Journal of Vegetation Science 19: 613–620.

    Article  Google Scholar 

  • Rybníčková, E., P. Hájková & K. Rybníček, 2005. The origin and development of spring fen vegetation and ecosystems – palaeobotanical results. In Poulíčková, A., M. Hájek & K. Rybníček (eds), Ecology and Palaeoecology of Spring Fens of the West Carpathians. Palacký University, Olomouc: 29–62.

    Google Scholar 

  • Schaffers, A. P. & K. V. Sýkora, 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: composition with field measurements. Journal of Vegetation Science 11: 225–244.

    Article  Google Scholar 

  • Schenková, J., O. Komárek & S. Zahrádková, 2001. Oligochaeta of the Morava and Odra River basins (Czech Republic): species distribution and community composition. Hydrobiologia 463: 235–246.

    Article  Google Scholar 

  • Schlaghamerský, J., 2002. The Enchytraeidae of spruce forest plots of different exposure and acid deposition in a German mountain range. European Journal of Soil Biology 38: 305–309.

    Article  Google Scholar 

  • Schlaghamerský, J. & K. Kobetičová, 2005. A small annelid community (Enchytraeidae, Tubificidae, Aeolosomatidae) during meadow restoration on arable land and in a nearby well-preserved meadow. Proceedings of the Estonian Academy of Sciences: Biology, Ecology 54: 323–330.

    Google Scholar 

  • Siddall, M. E., K. Apakupakul, E. M. Burreson, K. A. Coates, C. Erséus, S. Gelder, M. Källersjö & H. Trapido-Rosenthal, 2001. Validating Livanow: molecular data agree that leeches, branchiobdellidans, and Acanthobdella peledina form a monphyletic group of oligochaetes. Molecular Phylogenetics and Evolution 21: 346–351.

    Article  PubMed  CAS  Google Scholar 

  • Sjörs, H. & U. Gunnarsson, 2002. Calcium and pH in north and central Swedish mire waters. Journal of Ecology 90: 650–657.

    Article  Google Scholar 

  • Smith, M. E., 1986. Ecology of Naididae (Oligochaeta) from an alkaline bog stream: life history patterns and community structure. Hydrobiologia 133: 79–90.

    Article  Google Scholar 

  • Smith, M. E. & J. R. Kaster, 1986. Feeding habits and dietary overlap of Naididae (Oligochaeta) form a bog stream. Hydrobiologia 137: 193–201.

    Article  Google Scholar 

  • Šporka, F., 1998. Thy typology of floodplain water bodies of the Middle Danube (Slovakia) on the basis of the superficial polychaete and oligochaete fauna. Hydrobiologia 386: 55–62.

    Article  Google Scholar 

  • Springett, J. A. & P. M. Latter, 1977. Studies on the micro-fauna of blanket bog with particular reference to Enchytraeidae. I. Field and laboratory test of micro-organisms as food. Journal of Animal Ecology 46: 959–974.

    Article  Google Scholar 

  • Springett, J. A., J. E. Brittain & B. P. Springett, 1970. Vertical movement of Enchytraeidae (Oligochaeta) in moorland soils. Oikos 21: 16–21.

    Article  Google Scholar 

  • Suren, A. M., P. Lambert, K. Image & B. K. Sorrell, 2008. Variation in wetland invertebrate communities in lowland acidic fens and swamps. Freshwater Biology 53: 727–744.

    Article  CAS  Google Scholar 

  • Svendsen, J. A., 1957a. The distribution of Lumbricidae in an area of Pennine moorland. Journal of Animal Ecology 26: 411–421.

    Article  Google Scholar 

  • Svendsen, J. A., 1957b. The behaviour of lumbricids under moorland conditions. Journal of Animal Ecology 26: 423–439.

    Article  Google Scholar 

  • Syrovátka, V., J. Schenková & K. Brabec, 2009. The distribution of chironomid larvae and oligochaetes within a stony-bottomed river stretch: the role of substrate and hydraulic characteristics. Fundamental and Applied Limnology 173: 43–62.

    Article  Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and Canodraw for Windows User’s Guide. Software for Canonical Community Ordination (ver. 4.5). Biometris, Wageningen.

    Google Scholar 

  • Tichý, L., 2002. JUICE, software for vegetation classification. Journal of Vegetation Science 13: 451–453.

    Article  Google Scholar 

  • Timm, T., 1999. A Guide to the Estonian Annelida. Estonian Academy Publishers, Tartu-Tallinn.

  • Timm, T. & H. H. Veldhijzen van Zanten, 2002. Freshwater Oligochaeta of North-West Europe. CD-ROM. Center for Taxonomic Identification (ETI), University of Amsterdam, Amsterdam.

  • Uzunov, V., V. Košel & V. Sládeček, 1988. Indicator value of freshwater Oligochaeta. Acta Hydrochimica et Hydrobiologica 16: 173–186.

    Article  Google Scholar 

  • van der Maarel, E., 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39: 97–114.

    Article  Google Scholar 

  • van Duinen, G. A., T. Timm, A. J. P. Smolders, A. M. T. Brock & W. C. E. P. Verberk, 2006. Differential response of aquatic oligochaete species to increased nutrient availability – a comparative study between Estonian and Dutch raised bogs. Hydrobiologia 564: 143–155.

    Article  Google Scholar 

  • Verdonschot, P. F. M., 1984. The distribution of aquatic oligochaetes on the fenland area of N.W. Overijssel (The Netherlands). Hydrobiologia 115: 215–222.

    Article  Google Scholar 

  • Verdonschot, P. F. M., 1999. Micro-distribution of oligochaetes in a soft-bottomed lowland stream (Elsbeek; The Netherlands). Hydrobiologia 406: 149–163.

    Article  Google Scholar 

  • Verdonschot, P. F. M., 2001. Hydrology and substrates: determinants of oligochaete distribution in lowland streams (The Netherlands). Hydrobiologia 463: 249–262.

    Article  Google Scholar 

  • Virtanen, R., J. Ilmonen, L. Paasivirta & T. Muotka, 2009. Community concordance between bryophyte and insect assemblages in boreal springs: a broad-scale study in isolated habitats. Freshwater Biology 54: 1651–1662.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Czech Science Foundation (526/09/H025 and P505/11/0779) and the Ministry of Education, Youth and Sports (MSM 0021622416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindřiška Bojková.

Additional information

Handling editor: Stuart Anthony Halse

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bojková, J., Schenková, J., Horsák, M. et al. Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia 667, 159–171 (2011). https://doi.org/10.1007/s10750-011-0634-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0634-3

Keywords

Navigation