Abstract
Trehalose is an important molecule in fungal cells that helps to protect against various environmental stresses. In most fungi, trehalose-6-phosphate synthase 1 (TPS1) catalyzes the synthesis of trehalose-6-phosphate, and is the key enzyme for biosynthesis of this sugar. In this study, the full-length Beauveria bassiana tps1 gene sequence was determined. Full-length Bbtps1 (1,906 bp) included a 1,563 bp open reading frame that contained a 55 bp intron located between deduced amino acids 104 and 105. Bioinformatics analysis predicted that the BbTPS1 protein comprised 520 residues with a calculated pI value of 5.63 and a molecular weight of 58.3 kDa. Using DNA walking experiments, we determined the 2,963 bp upstream sequence that included several typical promoter elements and putative transcription factor binding sites, such as TATA-box, GC-box, Oct-1, CRE-BP, CdxA, and GATA. Stress-response and heat-shock elements were also found in this upstream sequence. Recombinant BbTPS1 was expressed in Pichia pastoris GS115 in order to probe the function of Bbtps1. SDS-PAGE analysis showed that the expressed protein had a molecular weight of approximately 60 kDa as expected. Enzymatic activity measurements revealed specific TPS1 activity that peaked at 1.38 U/mL at 96 h. This work provides a basis for further functional investigation of the mechanism of trehalose anabolism in B. bassiana. It could also assist the construction of engineered B. bassiana strains with enhanced stress tolerance.
This is a preview of subscription content, access via your institution.
Abbreviations
- AOX1:
-
alcohol oxidase 1
- CDS:
-
coding sequence
- RACE:
-
rapid amplification of cDNA end
- TLC:
-
thin-layer chromatography
- TPS1:
-
trehalose-6-phosphate synthase 1
- TPS2:
-
trehalose-6-phosphate phosphatase
References
Al-Bader N., Vanier G., Liu H., Gravelat F.N., Urb M., Hoareau C.M., Campoli P., Chabot J., Filler S.G. & Sheppard D.C. 2010. Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect. Immun. 78: 3007–3018.
Bale J.S., van Lenteren J.C. & Bigler F. 2008. Biological control and sustainable food production. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363: 761–776.
Bandara A., Fraser S., Chambers P.J. & Stanley G.A. 2009. Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress. FEMS Yeast Res. 9: 1208–1216.
Bell W., Klaassen P., Ohnacker M., Boller T., Herweijer M., Schoppink P., Van der Zee P. & Wiemken A. 1992. Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur. J. Biochem. 209: 951–959.
Bendtsen J.D., Nielsen H., von Heijne G & Brunak S. 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340: 783–795.
Cao Y., Wang Y., Dai B., Wang B., Zhang H., Zhu Z., Xu Y., Jiang Y. & Zhang G. 2008. Trehalose is an important mediator of Cap1p oxidative stress response in Candida albicans. Biol. Pharm. Bull. 31: 421–425.
Cardoso F.C., Pinho J.M.R., Azevedo V. & Oliveira S.C. 2006. Identification of a new Schistosoma mansoni membranebound protein through bioinformatic analysis. Genet. Mol. Res. 5: 609–618.
Chaudhuri P., Basu A. & Ghosh A.K. 2008. Aggregation dependent enhancement of trehalose-6-phosphate synthase activity in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1780: 289–297.
Chaudhuri P., Basu A., Sengupta S., Lahiri S., Dutta T. & Ghosh A.K. 2009. Studies on substrate specificity and activity regulating factors of trehalose-6-phosphate synthase of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1790: 368–374.
Cui S.Y. & Xia Y.X. 2009. Isolation and characterization of the trehalose-6-phosphate synthase gene from Locusta migratoria manilensis. Insect Sci. 16: 287–295.
Doehlemann G., Berndt P. & Hahn M. 2006. Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. Microbiology 152: 2625–2634.
Farenhorst M., Mouatcho J.C., Kikankie C.K., Brooke B.D., Hunt R.H., Thomas M.B., Koekemoer L.L., Knols B.G. & Coetzee M. 2009. Fungal infection counters insecticide resistance in African malaria mosquitoes. Proc. Natl. Acad. Sci. USA 106: 17443–17447.
Fillinger S., Chaveroche M.K., van Dijck P., de Vries R., Ruijter G., Thevelein J. & d’Enfert C. 2001. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147: 1851–1862.
Ghikas D.V., Kouvelis V.N. & Typas M.A. 2010. Phylogenetic and biogeographic implications inferred by mitochondrial intergenic region analyses and ITS1-5.8S-ITS2 of the entomopathogenic fungi Beauveria bassiana and B. brongniartii. BMC Microbiol. 10: 174.
Hernandez M.M., Martinez-Villar E., Peace C., Perez-Moreno I. & Marco V. 2012. Compatibility of the entomopathogenic fungus Beauveria bassiana with flufenoxuron and azadirachtin against Tetranychus urticae. Exp. Appl. Acarol. 58: 395–405.
Honda Y., Tanaka M. & Honda S. 2010. Trehalose extends longevity in the nematode Caenorhabditis elegans. Aging Cell 9: 558–569.
Iturriaga G., Suarez R. & Nova-Franco B. 2009. Trehalose metabolism: from osmoprotection to signaling. Int. J. Mol. Sci. 10: 3793–3810.
Li G.Q. & Moriyama E.N. 2004. Vector NTI, a balanced all-inone sequence analysis suite. Brief. Bioinform. 5: 378–388.
Li Z.Z., Huang B., Chen M.j., Wang B. & Fan M.Z. 2011. Studies on the genus Beauveria in molecular era. Mycosystema 30: 823–835.
Lopez M., Tejera N.A., Iribarne C., Lluch C. & Herrera-Cervera J.A. 2008. Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress. Physiol. Plant. 134: 575–582.
Meera A., Rangarajan L. & Bhat S. 2009. Computational approach towards finding evolutionary distance and gene order using promoter sequences of central metabolic pathway. Interdiscip. Sci. 1: 128–132.
Nielsen M., Lundegaard C., Lund O. & Petersen T.N. 2010. CPHmodels-3.0-remote homology modeling using structureguided sequence profiles. Nucleic Acids Res. 38: 576–581.
Plasterer T.N. 2000. PROTEAN — protein sequence analysis and prediction. Mol. Biotechnol. 16: 117–125.
Rassette M.S., Pierpont E.I., Wahl T. & Berres M. 2011. Use of Beauveria bassiana to control northern fowl mites (Ornithonyssus sylviarum) on roosters in an agricultural research facility. J. Am. Assoc. Lab. Anim. Sci. 50: 910–915.
Sharma S.C. & Anand M.S. 2006. Role of selenium supplementation and heat stress on trehalose and glutathione content in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 133: 1–7.
Silva Z., Alarico S. & da Costa M. 2005. Trehalose biosynthesis in Thermus thermophilus RQ-1: biochemical properties of the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Extremophiles 9: 29–36.
Silva Z., Alarico S., Nobre A., Horlacher R., Marugg J., Boos W., Mingote A.I. & da Costa M.S. 2003. Osmotic adaptation of Thermus thermophilus RQ-1: lesson from a mutant deficient in synthesis of trehalose. J. Bacteriol. 185: 5943–5952.
Sun M., Ren Q., Liu Z., Guan G., Gou H., Ma M., Li Y., Liu A., Yang J., Yin H. & Luo J. 2011. Beauveria bassiana: Synergistic effect with acaricides against the tick Hyalomma anatolicum anatolicum (Acari: Ixodidae). Exp. Parasitol. 128: 192–195.
Suzuki H., Pabst M.J. & Johnston R.B. 1985. Enhancement by Ca2+ or Mg2+ of catalytic activity of the superoxideproducing NADPH oxidase in membrane fractions of human neutrophils and monocytes. J. Biol. Chem. 260: 3635–3639.
Swislocka R., Oleksinski E., Regulska E., Kalinowska M. & Lewandowski W. 2007. Structural characterization of alkali metal 3-nitrobenzoates. J. Mol. Sruct. 834: 380–388.
Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.
Thorat L.J., Gaikwad S.M. & Nath B.B. 2012. Trehalose as an indicator of desiccation stress in Drosophila melanogaster larvae: a potential marker of anhydrobiosis. Biochem. Biophys. Res. Commun. 419: 638–642.
Thurkathipana N. & Mikunthan G. 2008. Eco-friendly management of hadda beetle using Beauveria bassiana in Brinjal. Commun. Agric. Appl. Biol. Sci. 73: 597–602.
Van Houtte H., Vandesteene L., Lopez-Galvis L., Lemmens L., Kissel E., Carpentier S., Feil R., Avonce N., Beeckman T., Lunn J.E. & Van Dijck P. 2013. Overexpression of the trehalase gene AtTRE1 leads to increased drought stress tolerance in Arabidopsis and is involved in abscisic acid-induced stomatal closure. Plant Physiol. 161: 1158–1171.
Wang Z.L., Lu J.D. & Feng M.G. 2012. Primary roles of two dehydrogenases in the mannitol metabolism and multi-stress tolerance of entomopathogenic fungus Beauveria bassiana. Environ. Microbiol. 14: 2139–2150.
Yu A.Q., Jin X.K., Li S., Guo X.N., Wu M.H., Li W.W. & Wang Q. 2013. Molecular cloning and expression analysis of a dorsal homologue from Eriocheir sinensis. Dev. Comp. Immunol. 41: 723–727.
Zhang F., Wang Z.P., Chi Z., Raoufi Z., Abdollahi S. & Chi Z.M. 2013. The changes in Tps1 activity, trehalose content and expression of TPS1 gene in the psychrotolerant yeast Guehomyces pullulans 17-1 grown at different temperatures. Extremophiles 17: 241–249.
Zhang J., Wang J., Li F., Sun Y., Yang C. & Xiang J. 2012. A trehalose-6-phosphate synthase gene from Chinese shrimp, Fenneropenaeus chinensis. Mol. Biol. Rep. 39: 10219–10225.
Zhang Q. & Yan T. 2012. Correlation of intracellular trehalose concentration with desiccation resistance of soil Escherichia coli populations. Appl. Environ. Microbiol. 78: 7407–7413.
Zhang Y.J., Zhao J.H., Fang W.G., Zhang J.Q., Luo Z.B., Zhang M., Fan Y.H. & Pei Y. 2009. Mitogen-activated protein kinase hog1 in the entomopathogenic fungus Beauveria bassiana regulates environmental stress responses and virulence to insects. Appl. Environ. Microbiol. 75: 3787–3795.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xie, L., Chen, H., Wang, Z. et al. Isolation of cDNA and upstream sequence of a gene encoding trehalose-6-phosphate synthase 1 from Beauveria bassiana and its functional identification in Pichia pastoris . Biologia 69, 959–967 (2014). https://doi.org/10.2478/s11756-014-0407-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s11756-014-0407-3
Key words
- Beauveria bassiana
- trehalose-6-phosphate synthase 1
- gene cloning
- upstream sequence
- Pichia pastoris