Skip to main content
Log in

Trehalose biosynthesis in Thermus thermophilus RQ-1: biochemical properties of the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The genes for trehalose synthesis in Thermus thermophilus RQ-1, namely otsA [trehalose-phosphate synthase (TPS)], otsB [trehalose-phosphate phosphatase (TPP)], and treS [trehalose synthase (maltose converting) (TreS)] genes are structurally linked. The TPS/TPP pathway plays a role in osmoadaptation, since mutants unable to synthesize trehalose via this pathway were less osmotolerant, in trehalose-deprived medium, than the wild-type strain. The otsA and otsB genes have now been individually cloned and overexpressed in Escherichia coli and the corresponding recombinant enzymes purified. The apparent molecular masses of TPS and TPP were 52 and 26 kDa, respectively. The recombinant TPS utilized UDP-glucose, TDP-glucose, ADP-glucose, or GDP-glucose, in this order as glucosyl donors, and glucose-6-phosphate as the glucosyl acceptor to produce trehalose-6-phosphate (T6P). The recombinant TPP catalyzed the dephosphorylation of T6P to trehalose. This enzyme also dephosphorylated G6P, and this activity was enhanced by NDP-glucose. TPS had an optimal activity at about 98°C and pH near 6.0; TPP had a maximal activity near 70°C and at pH 7.0. The enzymes were extremely thermostable: at 100°C, TPS had a half-life of 31 min, and TPP had a half-life of 40 min. The enzymes did not require the presence of divalent cations for activity; however, the presence of Co2+ and Mg2+ stimulates both TPS and TPP. This is the first report of the characterization of TPS and TPP from a thermophilic organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8:115–118

    Article  CAS  Google Scholar 

  • Arnott MA, Michael RA, Thompson CR, Hough DW, Danson MJ (2000) Thermostability and thermoactivity of citrate synthases from thermophilic and hyperthermophilic archaea, Thermoplasma acidophilum and Pyrococcus furiosus. J Mol Biol 304:657–668

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cabib E, Leloir L (1958) The biosynthesis of trehalose-phosphate. J Biol Chem 231:259–275

    CAS  PubMed  Google Scholar 

  • da Costa MS, Nobre MF, Rainey FA (2001) The genus Thermus. In: Boone DR, Castenholtz RW (eds) Bergey’s manual of systematic bacteriology, vol. 1, 2nd edn. Springer, Berlin Heidelberg New York, pp 404–414

  • De Smet KAL, Weston A, Brown IN, Young DB, Robertson BD (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146:199–208

    PubMed  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17–27

    Article  Google Scholar 

  • Empadinhas N, Albuquerque L, Henne A, Santos H, da Costa MS (2003) The bacterium Thermus thermophilus, like hyperthermophilic archaea, uses a two-step pathway for the synthesis of mannosylglycerate. Appl Environ Microbiol 69:3272–3279

    Article  CAS  PubMed  Google Scholar 

  • Friedman S (1971) Interactions among sites responsible for trehalose-6-phosphate and trehalose-activated glucose-6-phosphate hydrolysis on trehalose phosphatase isolated from Phormia regina. J Biol Chem 246:4122–4130

    CAS  PubMed  Google Scholar 

  • Giæver HM, Styrvold OB, Kaasen I, Strøm AR (1988) Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170:2841–2849

    PubMed  Google Scholar 

  • Killick KA (1979) Trehalose-6-phosphate synthase from Dyctiostelium discoideum: partial purification and the characterization of the enzyme from young sorocarps. 196:121–133

    Google Scholar 

  • Klutts S, Pastuszak I, Edavana VK, Thampi P, Pan Y-T, Abraham EC, Carroll JD, Elbein AD (2003) Purification, cloning and properties of mycobacterial trehalose-phosphate phosphatase. J Biol Chem 278:2093–2100

    Article  CAS  PubMed  Google Scholar 

  • Koyama Y, Furukawa K (1990) Cloning and sequence analysis of tryptophan synthetase genes of an extreme thermophile, Thermus thermophilus HB27: plasmid transfer from replica-plated Escherichia coli recombinant colonies to competent T. thermophilus cells. J Bacteriol 172:3490–3495

    CAS  PubMed  Google Scholar 

  • Lamosa P, Martins LO, da Costa MS, Santos H (1998) Effects of temperature, salinity, and medium composition on compatible solute accumulation by Thermococcus spp. Appl Environ Microbiol 64:3591–3598

    CAS  PubMed  Google Scholar 

  • Lapp D, Patterson BW, Elbein AD (1971) Properties of a trehalose phosphate synthase from Mycobacterium smegmatis. J Biol Chem 246:4567–4579

    CAS  Google Scholar 

  • Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61:3592–3597

    CAS  PubMed  Google Scholar 

  • Lippert K, Galinski EA, Truper HG (1993) Biosynthesis and function of trehalose in Ectothiorhodospira halochloris. Antonie Van Leeuwenhoek 63:85–91

    CAS  PubMed  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    CAS  Google Scholar 

  • Maruta K, Nakada T, Kubota M, Chaen H, Sugimoto T, Kurimoto M, Tsujisaka Y (1995) Formation of trehalose from maltooligosaccharides by a novel enzymatic system. Biosci Biotech Biochem 59:1829–1834

    CAS  Google Scholar 

  • Maruta K, Hattori K, Nakada T, Kubota M, Sugimoto T, Kurimoto M (1996a) Cloning and sequencing of trehalose biosynthesis genes from Arthrobacter sp. Q36. Biochim Biophys Acta 1289:10–13

    Article  CAS  Google Scholar 

  • Maruta K, Hattori K, Nakada T, Kubota M, Sugimoto T, Kurimoto M (1996b) Cloning and sequencing of trehalose biosynthesis genes from Rhizobium sp. M-11. Biosci Biotechnol Biochim 60:717–720

    CAS  Google Scholar 

  • Maruta K, Hattori K, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1996c) Cloning and sequencing of cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim Biophys Acta 1291:177–181

    Article  CAS  Google Scholar 

  • Mikkat S, Effmert U, Hagemann M (1997) Uptake and use of the osmoprotective compounds trehalose, glucosylglycerol, and sucrose by the cyanobacterium Synechocystis sp. PCC6803. Arch Microbiol 167:112–118

    Article  CAS  Google Scholar 

  • Mitchell DA, Marshall TK, Deschenes RJ (1993) Vectors for the inducible overexpression of gluthathione S-transferase fusion proteins in yeast. Yeast 9:715–723

    CAS  PubMed  Google Scholar 

  • Murphy TA, Wyatt GR (1965) The enzymes of glycogen and trehalose synthesis in silk moth fat body. J Biol Chem 240:1500–1508

    CAS  PubMed  Google Scholar 

  • Nunes OC, Manaia CM, da Costa MS, Santos H (1995) Compatible solutes in the thermophilic bacteria Rhodothermus marinus and “Thermus thermophilus”. Appl Environ Microbiol 61:2351–2357

    CAS  Google Scholar 

  • Pan YT, Carroll JD, Elbein AD (2002) Trehalose-phosphate synthase of Mycobacterium tuberculosis: cloning, expression and purification of the recombinant enzyme. Eur J Biochem 269:6091–6100

    Article  CAS  PubMed  Google Scholar 

  • Reinders A, Bürckert N, Hohmamm S, Thevelein JM, Boller T, Wiemken A, De Virgilio C (1997) Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol 24:687–695

    Article  CAS  PubMed  Google Scholar 

  • Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509

    Article  CAS  PubMed  Google Scholar 

  • Seo HS, Koo YJ, Lim JY, Song JT, Kim CH, Kim JK, Lee JS, Choi YD (2000) Characterization of bifunctional enzyme fusion of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase of Escherichia coli. Appl Environ Microbiol 66:2484–2490

    Article  CAS  PubMed  Google Scholar 

  • Silva Z, Alarico S, Nobre A, Horlacher R, Marugg J, Boos W, Mingote AI, da Costa MS (2003) Osmotic adaptation of Thermus thermophilus RQ-1: a lesson from a mutant deficient in the synthesis of trehalose. J Bacteriol 185:5943–5952

    Article  CAS  PubMed  Google Scholar 

  • Singer GA, Hickey DA (2003) Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content. Gene 317:39–47

    Article  CAS  PubMed  Google Scholar 

  • Thomas TM, Scopes RK (1998) The effects of temperature on the kinetics and stability of mesophilic and thermophilic 3-phosphoglycerate kinases. Biochem J 330:1087–1095

    CAS  PubMed  Google Scholar 

  • Tsusaki K, Nishimoto T, Nakada T, Kubota M, Chaen H, Sugimoto T, Kurimoto M (1996) Cloning and sequencing of trehalose synthase gene from Pimelobacter sp. R48. Biochim Biophys Acta 1290:1–3

    Article  CAS  PubMed  Google Scholar 

  • Tsusaki K, Nishimoto T, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1997) Cloning and sequencing of trehalose synthase gene from Thermus aquaticus ATCC 33923. Biochim Biophys Acta 1334:28–32

    Article  CAS  Google Scholar 

  • Vieille C, Burdette DS, Zeikus JG (1996) Thermozymes. Biotechnol Annu Rev 2:1–83

    CAS  PubMed  Google Scholar 

  • Vieille C, Epting KL, Kelly RM, Zeikus JG (2001) Bivalent cations and amino-acid composition contribute to the thermostability of Bacillus licheniformis xylose isomerase. Eur J Biochem 268:6291–6301

    Article  CAS  PubMed  Google Scholar 

  • Wang X, He X, Yang S, An X, Chang W, Liang D (2003) Structural basis for thermostability of β-glycosidase from the thermophilic eubacterium Thermus nonproteolyticus HG102. J Bacteriol 185:4248–4255

    Article  CAS  PubMed  Google Scholar 

  • White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD, Dodson RJ, Haft DH, Gwinn ML, Nelson WC, Richardson DL, Moffat KS, Qin H, Jiang L, Pamphile W, Crosby M, Shen M, Vamathevan JJ, Lam P, Mc Donald L, Utterback T, Zalewski C, Makarova KS, Aravind L, Daly MJ, Fraser CM, et al (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577

    Google Scholar 

  • Wolf A, Krämer R, Morbach S (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC 13032 and their significance in response to osmotic stress. Mol Microbiol 49:1119–1134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the European Commission 5th Framework Programme, project QLK3-CT-2000-00640, and FCT/FEDER projects PRAXIS/P/BIO/12082/1998 and POCTI/35715/BIO/2000. Z. Silva acknowledges a Ph.D. grant from PRAXIS XXI (BD/21669/99).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton S. da Costa.

Additional information

Communicated by G. Antranikian

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, Z., Alarico, S. & da Costa, M.S. Trehalose biosynthesis in Thermus thermophilus RQ-1: biochemical properties of the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Extremophiles 9, 29–36 (2005). https://doi.org/10.1007/s00792-004-0421-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-004-0421-4

Keywords

Navigation