Skip to main content
Log in

Molecular Cloning, Characterisation, and Heterologous Expression of Farnesyl Diphosphate Synthase from Sanghuangporus baumii

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A farnesyl diphosphate synthase (FPS) cDNA and promoter region was cloned from Sanghuangporus baumii. The gene contains a 150-bp 5′-untranslated region (UTR), a 154-bp 3′-UTR, and a 1062-bp open reading frame (ORF) encoding a 354 amino acid polypeptide. The FPS-DNA includes three exons (nucleotides 1 –123, 184–321, and 505–1305) and two introns (nucleotides 124–183 and 322–504). The FPS protein has a molecular weight of 40.73 kDa, it is hydrophilic with a theoretical isoelectric point of 5.13, and the secondary and three-dimensional structure were analysed. There is a transcription start site at nucleotides 1318–1368 of the promoter, which includes typical eukaryotic promoter elements (TATA Box, CAAT Box, ARBE, AT-rich element, G-box, MBS, Sp1, LTR). FPS was expressed in Escherichia coli BL21, and the recombinant protein (63.41 kDa) was subjected to dodecyl sulphate, sodium salt-polyacrylamide gel electrophoresis (SDS-PAGE). FPS transcription was measured during different developmental stages, and expression in 11 and 13 days mycelia was upregulated 49.3-fold and 125.4-fold, respectively, compared with 9 days mycelia controls. Through analysing, S. baumii triterpenoid content was correlated with the transcription level of FPS during different development stages, and the triterpenoid content peaked at day 15 (7.21 mg/g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou, L.-W., Vlasak, J., Decock, C., Assefa, A., Stenlid, J., Abate, D., et al. (2015). 第十二届海峡两岸真菌学学术研讨会大会手册壁报论文摘要集 (Global diversity and taxonomy of the Inonotus linteus complex (Hymenochaetales, Basidiomycota): Sanghuangporus gen.nov. Tropicoporus excentrodendri and T guanacastensis gen.et spp.nov. and 17 new combinations). Fungal Diversity 77(1), 335–347.

    Google Scholar 

  2. Sun, J., Chen, Q. J., Zhu, M. J., Wang, H. X., & Zhang, G. Q. (2014). An extracellular laccase with antiproliferative activity from the sanghuang mushroom Inonotus baumii. Journal of Molecular Catalysis B,99, 20–25.

    CAS  Google Scholar 

  3. Wang, F. F., Shi, C., Yang, Y., et al. (2018). Medicinal mushroomPhellinus igniarius induced cell apoptosis in gastric cancer SGC-7901 through a mitochondria-dependent pathway. Biomedicine & Pharmacotherapy,102, 18–25.

    CAS  Google Scholar 

  4. Ge, Q., Mao, J. W., Zhang, A. Q., Wang, Y. J., & Sun, P. L. (2013). Purification, chemical characterization, and antioxidant activity of a polysaccharide from the fruiting bodies of sanghuang mushroom (Phellinus baumii Pilát). Food Science and Biotechnology,22(2), 301–307.

    CAS  Google Scholar 

  5. Taddesse, Y., Lee, W. M., Ko, D., Park, S. C., Cho, J. Y., Park, H. J., et al. (2013). Phellinus baumii ethyl acetate extract alleviated collagen type II induced arthritis in DBA/1 mice. Journal of Natural Medicines,67(4), 807–813.

    Google Scholar 

  6. Wu, N. (2013). 桑黄子实体中抗衰老化合物的筛选及作用机制的初步探究(Screening the anti-aging active Components from the fruit of Phellinusbaumii and study on the mechanism of active compounds). Shanghai: Shanghai Normal University, PhD. Chinese.

    Google Scholar 

  7. Kim, D. I., Kim, K. S., Kang, J. H., & Kim, H. J. (2013). Effect of Phellinus baumii-biotransformed soybean powder on lipid metabolism in rats. Preventive Nutrition and Food Science,18(2), 98–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Xue, Q., Sun, J., Zhao, M. W., Zhang, K., & Lai, R. (2011). Immunostimulatory and anti-tumor activity of a water-soluble polysaccharide from Phellinus baumii mycelia. World Journal of Microbiology and Biotechnology,27(5), 1017–1023.

    CAS  Google Scholar 

  9. Wang, Y. Y., Ma, H., Ding, Z. C., Yang, Y., Wang, W. H., Zhang, H. N., et al. (2019). baumii. International Journal of Biological Macromolecules,123, 201–209.

    PubMed  Google Scholar 

  10. Taji, S., Yamada, T., Wada, S., Tokuda, H., Sakuma, K., & Tanaka, R. (2008). Lanostane-type triterpenoids from the sclerotia of Inonotus obliquus possessing anti-tumor promoting activity. European Journal of Medicinal Chemistry,43(11), 2373–2379.

    CAS  PubMed  Google Scholar 

  11. Zhang, L. F., Sun, T. T., & Zou, L. (2015). 鲍姆纤孔菌总三萜的提取及其体外抗乳腺癌细胞 (MCF-7)活性 (Extraction of total triterpenoids from Inonotus baumii and its inhibitory activity on breast cancer cells (MCF-7) in vitro). Drug Evaluation Research,38(5), 497–502.

    Google Scholar 

  12. Zhang, G. L., Si, J., Tian, X. M., & Wang, J.-P. (2017). 真菌激发子对桑黄胞内代谢产物积累的影响 (The effects of fungal elicitor on the accumulation of Sanghuangporus sanghuang intracellular metabolites). Mycosystema,36(4), 482–491.

    Google Scholar 

  13. Sun, T. T., Zou, L., Zhang, L. F., Zhang, J., & Wang, X. (2017). Methyl jasmonate induces triterpenoid biosynthesis in Inonotus baumii. Biotechnology & Biotechnological Equipment,31(2), 312–317.

    CAS  Google Scholar 

  14. Hemmerlin, A., Rivera, S. B., Erickson, H. K., & Poulter, C. D. (2003) Enzymes encoded by the farnesyl diphosphate synthase genefamily in the big sagebrush Artemisia tridentata ssp. spiciformis. Journal of Biological Chemistry, 278(34), 32132–32140.

    CAS  PubMed  Google Scholar 

  15. Rodríguez-Concepción, M., & Boronat A. (2002). Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant physiology, 130(3), 1079–1089.

    PubMed  Google Scholar 

  16. Hunter, W. N. (2007). The non-mevalonate pathway of isoprenoid precursor biosynthesis. The Journal of Biological Chemistry,282(30), 21573–21577.

    CAS  PubMed  Google Scholar 

  17. Liao, Z. H., Chen, M., Gong, Y. F., Li, Z. G., Zuo, K. J., Wang, P., et al. (2006). A new farnesyl diphosphate synthase gene from Taxus media rehder: Cloning, characterization and functional. Journal of Integrative Plant Biology,48(6), 692–699.

    CAS  Google Scholar 

  18. Zjawiony, J. K. (2004). Biologically active compounds from Aphyllophorales (polypore) fungi. Journal of Natural Products,67(2), 300–310.

    CAS  PubMed  Google Scholar 

  19. Lange, B. M., Rujan, T., Martin, W., & Croteau, R. (2000). Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proceedings of the National Academy of Sciences of the United States of America,97(24), 13172–13177.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Poulter, C. D. (2006). Farnesyl diphosphate synthase. A paradigm for understanding structure and function relationships in E-polyprenyl diphosphate synthases. Phytochemistry Reviews, 5 (1), 17–26.

    CAS  Google Scholar 

  21. Chen, D. H., Ye, H. C., & Li, G. F. (2000). Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation. Plant Science,155, 179–185.

    CAS  PubMed  Google Scholar 

  22. Liu, M. J., Yu, Y. L., Jiang, S., et al. (2018). 珠子参中法尼基焦磷酸合酶(FPS)对皂苷生物合成的影响研究 (Effect of Farnesyl-pyrophosphate Synthase( FPS) on the Biosynthesis of Saponins in Panax japonicas). Bulletin of Botanical Research,38(4), 611–618.

    Google Scholar 

  23. Fei, Y., Li, N., Zhang, D. H., & Xu, J. W. (2019). Increased production of ganoderic acids by overexpression of homologous farnesyl diphosphate synthase and kinetic modeling of ganoderic acid production in Ganoderma lucidum. Microbial Cell Factories,18, 115.

    PubMed  PubMed Central  Google Scholar 

  24. Park, H. W., Kim, O. T., Hyun, D. Y., Kim, T. B., Kim, J. U., Kim, Y., et al. (2013). Overexpression of farnesyl diphosphate synthase by introducing cafps gene in Panax ginseng C. A. mey. Korean Journal of Medicinal Crop Science, 21(1), 32–38.

    Google Scholar 

  25. Gupta, P., Akhtar, N., Tewari, S. K., Sangwan, R. S., & Trivedi, P. K. (2011). Differential expression of farnesyl diphosphate synthase gene from with ania somniferain different chemotypes and in response to elicitors. Plant Growth Regulation,65(1), 93–100.

    CAS  Google Scholar 

  26. Ding, Y. X., -Yang, X., Shang, C. H., Ren, A., Shi, L., Li, Y. X., et al. (2008). Molecular cloning, characterization, and differential expression of a farnesyl-diphosphate synthase gene from the basidiomycetous fungus Ganoderma lucidum . Journal of the Agricultural,72(6), 9.

    Google Scholar 

  27. Qi, Y., Liu, C., Sun, X., Qiu, L., & Shen J. (2017). The identification of transcriptional regulation related gene of laccase poxc through yeast one-hybrid screeningfrom Pleurotus ostreatus. Fungal Biology 2017, 121(11), 905–910.

    CAS  PubMed  Google Scholar 

  28. Zhang, W. B., Wang, J. G., Li, Z. K., Yang, L. Q., Qin, J., Xiang, Z. H., et al. (2014). 药用真菌桑黄的研究进展 (Progress of studies on medicinal fungus Phellinus). China Journal of Chinese Materia Medica,39(15), 2838–2845.

    PubMed  Google Scholar 

  29. Jia, L. (2016). 茯苓总三萜免疫抑制及诱导人结肠癌RKO细胞凋亡的硏究 (Study of immunosuppressive activity and apoptosis-inducing effect of total triterpenoids from Poria cocos on human colorectal carcinoma). Guangdong: Southern Medical University, PhD. Chinese.

    Google Scholar 

  30. Guruprasad, K., Reddy, B. V., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, Design and Selection,4(2), 155–161.

    CAS  Google Scholar 

  31. Garnier, B. J., Gibrat, J. F., & Robson, B. (1996). GOR secondary structure prediction method version IV. Methods in Enzymology,266, 540–553.

    CAS  PubMed  Google Scholar 

  32. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., et al. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research,46(1), 296–303.

    Google Scholar 

  33. Guex, N., Peitsch, M. C., & Schwede, T. (2010). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis,30(S1), S162–S173.

    Google Scholar 

  34. Bienert, S., Waterhouse, A., & de Beer, T. A. P. (2017). The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Research,45(1), D313–D319.

    CAS  PubMed  Google Scholar 

  35. Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics,27(3), 343–350.

    CAS  PubMed  Google Scholar 

  36. Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., & Schwede, T. (2017). Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scientific Reports,7(1), 10480.

    PubMed  PubMed Central  Google Scholar 

  37. Tachibana, A ., Yano, Y., Otani, S., Nomura, N., Sako Y., & Taniguchi, M. (2000). Novel prenyltransferase gene encoding farnesylgeranyl diphosphate synthase from a hyperthermophilic archaeon, Aeropyrum pernix. Molecularevolution with alteration in product specificity. European Journal of Biochemistry, 267(2), 321.

    CAS  PubMed  Google Scholar 

  38. Anderson, M. S., Yarger, J. G., Burck, C. L., & Poulter C. D. (1989). Farnesyl diphosphate synthetase. Molecular cloning, sequence, and expression of an essential gene from Saccharomyces cerevisiae. Journal of Biological Chemistry, 264(32), 19176–19184.

    CAS  PubMed  Google Scholar 

  39. Hemmerlin, A., Rivera, S. B., Erickson, H. K., & Poulter C. D. (2003). Enzymes encoded by the farnesyl diphosphate synthase gene family in the big Sagebrush Artemisia tridentata ssp. spiciformis. Journal of Biological Chemistry, 278(34), 32132–32140.

    CAS  PubMed  Google Scholar 

  40. Cervantes-Cervantes, M. (2006). Maize cDNAs expressed in endosperm encode functional farnesyl diphosphate synthase with geranylgeranyl diphosphate synthase activity. Plant Physiology,141(1), 220–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ding, Y. X. (2013). 灵芝法尼基焦磷酸合酶基因的克隆和表达特性研究 (Molecular cloning, characterization, and differential expression of a farnesyl-diphosphate synthase gene from the basidiomycetous fungus Ganoderma lucidum). Nanjing: Nanjing Agricultural University. PhD Dissertations. Chinese.

  42. Zhu, D. Q. (2016). 基因表达过程中涨落与延迟作用机制的研究 (The study of fluctuation and delay effects in gene expression process), Anhui: University of Science and Technology of China. Chinese: PhD.

    Google Scholar 

  43. Zhang, C. B., Sun, H. X., & Gong, Z. J. (2000). 植物萜类化合物的天然合成途径及其相关合酶 (Plant terpenoid natural metabolism pathways and their synthases). Plant Physiology Journal,43(04), 779–786.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundamental Research Funds for the Central Universities, China (2572017CF01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zou.

Ethics declarations

Conflict of interest

We declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Sun, T., Sun, J. et al. Molecular Cloning, Characterisation, and Heterologous Expression of Farnesyl Diphosphate Synthase from Sanghuangporus baumii. Mol Biotechnol 62, 132–141 (2020). https://doi.org/10.1007/s12033-019-00231-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00231-0

Keywords

Navigation